The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms

Abstract

Key message

The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. These proteins also move rapidly and continuously in the nuclei, and their movements are affected by ATP depletion.

Abstract

The U2AF65 proteins are splicing factors that interact with SF1 and U2AF35 proteins to promote U2snRNP for the recognition of the pre-mRNA 3′ splice site during early spliceosome assembly. We have determined the subcellular localization and movement of these proteins’ Arabidopsis homologs. It was found that Arabidopsis U2AF65 homologs, AtU2AF65a, and AtU2AF65b proteins interact with AtU2AF35a and AtU2AF35b, which are Arabidopsis U2AF35 homologs. We have examined the mobility of these proteins including AtSF1 using fluorescence recovery after photobleaching and fluorescence loss in photobleaching analyses. These proteins displayed dynamic movements in nuclei and their movements were affected by ATP depletion. We have also demonstrated that these proteins shuttle between nuclei and cytoplasms, suggesting that they may also function in cytoplasm. These results indicate that such splicing factors show very similar characteristics to their human counterparts, suggesting evolutionary conservation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ATP:

Adenosine triphosphate

FLIP:

Fluorescence loss in photobleaching

FRAP:

Fluorescence recovery after photobleaching

GFP:

Green fluorescence protein

LMB:

Leptomycin B

NaN3:

Sodium azide

Pre-mRNA:

Precursor messenger RNA

SF1:

Splicing factor 1

snRNP:

Small nuclear ribonucleoproteins

U2AFs:

U2 snRNP auxiliary splicing factor

NES:

Nuclear export signal

References

  1. Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    CAS  Article  PubMed  Google Scholar 

  2. Ali GS, Reddy ASN (2006) ATP, phosphorylation and transcription regulate the mobility of plant splicing factors. J Cell Sci 119:3527–3538

    CAS  Article  PubMed  Google Scholar 

  3. Ali GS, Reddy ASN (2008a) Regulation of alternative splicing of pre-mRNAs by stresses. Curr Top Microbiol Immunol 326:257–275

    CAS  PubMed  Google Scholar 

  4. Ali GS, Reddy ASN (2008b) Spatiotemporal organization of pre-mRNA splicing proteins in plants. Curr Top Microbiol Immunol 326:103–118

    CAS  PubMed  Google Scholar 

  5. Ali GS, Golovkin M, Reddy ASN (2003) Nuclear localization and in vivo dynamics of a plant-specific serine/arginine-rich protein. Plant J 36:883–893

    CAS  Article  PubMed  Google Scholar 

  6. Barta A, Marquez Y, Brown JWS (2012) Challenges in plant alternative splicing. In: Smith CWJ, Lührmann R (eds) Alternative Pre-mRNA splicing: theory and protocols. Wiley-VCH Verlag, Weinheim, pp 79–89

    Google Scholar 

  7. Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14:1293–1309

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Burge CB, Tuschl T, Sharp PA (1999) Splicing of precursors to mRNAs by the spliceosome. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 525–560

    Google Scholar 

  9. Carmo-Fonseca M (2002) The contribution of nuclear compartmentalisation to gene regulation. Cell 108:513–521

    CAS  Article  PubMed  Google Scholar 

  10. Chusainow J, Ajuh PM, Trinkle-Mulcahy L, Sleeman JE, Ellenberg J, Lamond AI (2005) FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35. RNA 11:1201–1214

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Docquier S, Tillemans V, Deltour R, Motte P (2004) Nuclear bodies and compartmentalisation of pre-mRNA splicing factors in higher plants. Chromosoma 112:255–266

    CAS  Article  PubMed  Google Scholar 

  12. Domon C, Lorković ZJ, Valcarcel J, Filipowicz W (1998) Multiple forms of the U2 small nuclear ribonucleoprotein auxiliary factor U2AF subunits expressed in higher plants. J Biol Chem 273:34603–34610

    CAS  Article  PubMed  Google Scholar 

  13. Dong XH, Biswas A, Süel KE, Jackson LK, Martinez R, Gu HM et al (2009) Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature 458:1136–1141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fang Y, Hearn S, Spector DL (2004) Tissue-specific expression and dynamic organisation of SR splicing factors in Arabidopsis. Mol Biol Cell 15:2664–2673

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Gama-Carvalho M, Carmo-Fonseca M (2001) The rules and roles of nucleocytoplasmic shuttling proteins. FEBS Lett 498:157–163

    CAS  Article  PubMed  Google Scholar 

  16. Gama-Carvalho M, Carvalho MP, Kehlebbach A, Valcárcel J, Carmo-Fonseca M (2001) Nucleocytoplasmic shuttling of heterodimer splicing factor U2AF. J Biol Chem 16:13104–13112

    Article  Google Scholar 

  17. Hackmann A, Wu H, Schneider UM, Meyer K, Jung K, Krebber H (2014) Quality control of spliced mRNAs requires the shuttling SR proteins Gbp2 and Hrb1. Nat Commun 5:3123

    Article  PubMed  Google Scholar 

  18. Iida K, Seki M, Sakurai T, Satou M, Akiyama K et al (2004) Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Res 32:5096–5103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Jang YH, Park HY, Lee KC, May PT, Kim SK, Suh MC et al (2014) The Arabidopsis homolog of splicing factor SF1 is involved in the alternative splicing of pre-mRNA and development in Arabidopsis thaliana. Plant J 78:591–603

    CAS  Article  PubMed  Google Scholar 

  20. Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12:5–14

    CAS  Article  PubMed  Google Scholar 

  21. Koroleva OA, Clader G, Pendle AF, Kim SH, Lewandowska D, Simpson CG et al (2009) Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell 21:1592–1606

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M et al (1998) Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242:540–547

    CAS  Article  PubMed  Google Scholar 

  23. Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280:547–553

    CAS  Article  PubMed  Google Scholar 

  24. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    CAS  Article  PubMed  Google Scholar 

  25. Lorković ZJ, Barta A (2004) Compartmentalization of the splicing machinery in plant cell nuclei. Trends Plant Sci 9:565–568

    Article  PubMed  Google Scholar 

  26. Maldonado-Bonilla LD (2014) Composition and function of P bodies in Arabidopsis thaliana. Front Plant Sci 5:201. doi:10.3389/fpls

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maroney PA, Romfo CM, Nilsen TW (2000) Functional recognition of the 5′ splice site by U4/U6·U5 tri-snRNP defines a novel ATP-dependent step in early spliceosome assembly. Mol Cell 6:317–328

    CAS  Article  PubMed  Google Scholar 

  28. Misteli T (2000) Different site, different splice. Nat Cell Biol 2:E98–E100

    CAS  Article  PubMed  Google Scholar 

  29. Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    CAS  Article  PubMed  Google Scholar 

  30. Misteli T, Spector DL (1998) The cellular organization of gene expression. Curr Opin Cell Biol 10:322–331

    Article  Google Scholar 

  31. Misteli T, Spector DL (1999) RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell 3:697–705

    CAS  Article  PubMed  Google Scholar 

  32. Misteli T, Caseras JF, Spector DL (1997) The dynamics of a pre-mRNA splicing factor in living cells. Nature 387:523–527

    CAS  Article  PubMed  Google Scholar 

  33. Moore MJ (2000) Intron recognition comes of AGe. Nat Struct Biol 7:14–16

    CAS  Article  PubMed  Google Scholar 

  34. Patel AA, Steitz JA (2003) Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol 4:960–970

    CAS  Article  PubMed  Google Scholar 

  35. Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108:501–512

    CAS  Article  PubMed  Google Scholar 

  36. Rausin G, Tillemans V, Stankovic N, Hanikenne M, Motte P (2010) Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains. Plant Physiol 153:273–284

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Reddy ASN (2001) Nuclear pre-mRNA splicing in plants. Crit Rev Plant Sci 20:523–571

    CAS  Article  Google Scholar 

  38. Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    CAS  Article  PubMed  Google Scholar 

  39. Rino J, Carvalho T, Braga J, Desterro JMP, Luhrmann R, Carmo-Fonseca M (2007) A stochastic view of spliceosome assembly and recycling in the nucleus. PLoS Comput Biol 3:2019–2031

    CAS  Article  PubMed  Google Scholar 

  40. Rino J, Desterro JMP, Pacheco TR, Gadella TW, Carmo-Fonseca M (2008) Splicing factors SF1 and U2AF associate in extraspliceosomal complexes. Mol Cell Biol 28:3045–3057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Ruskin B, Zamore PD, Green MR (1988) A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 52:207–219

    CAS  Article  PubMed  Google Scholar 

  42. Spector DL (1993) Macromolecular domains within the cell nucleus. Annu Rev Cell Biol 9:265–315

    CAS  Article  PubMed  Google Scholar 

  43. Tillemans V, Dispa L, Remacle C, Collinge M, Motte P (2005) Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells. Plant J 41:567–582

    CAS  Article  PubMed  Google Scholar 

  44. Tillemans V, Leponce I, Rausin G, Dispa L, Motte P (2006) Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors. Plant Cell 18:3218–3234

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Twyffels L, Gueydan C, Kruys V (2011) Shuttling SR proteins: more than splicing factors. FEBS J 278:3246–3255

    CAS  Article  PubMed  Google Scholar 

  46. Wang BB, Brendel V (2006) Molecular characterization and phylogeny of U2AF35 homologs in plants. Plant Physiol 140:624–636

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Weigel D, Glazebrook J (2002) Arabidopsis. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  48. Zaidi SK, Young DW, Choi JY, Pratap J, Javed A, Montecino M et al (2005) The dynamic organisation of gene-regulatory machinery in nuclear microenvironments. EMBO Rep 6:128–133

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Zamore PD, Green MR (1989) Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc Natl Acad Sci USA 86:9243–9247

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang XN, Mount SM (2009) Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development. Plant Physiol 150:1450–1458

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (to J.-K. Kim), and by a Korea University Grant (to J.-K. Kim).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jeong Hwan Lee or Jeong-Kook Kim.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by Inhwan Hwang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, HY., Lee, K.C., Jang, Y.H. et al. The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. Plant Cell Rep 36, 1113–1123 (2017). https://doi.org/10.1007/s00299-017-2142-z

Download citation

Keywords

  • Dynamic movement
  • FRAP
  • FLIP
  • SF1
  • Shuttling
  • U2AF35
  • U2AF65