Skip to main content
Log in

Combinatorial requirement of W- and WT-boxes in microbe-associated molecular pattern-responsive synthetic promoters

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The WT-box GGACTTTC belongs to a novel class of MAMP-responsive cis-regulatory sequences that are part of combinatorial elements.

Abstract

Microbe-associated molecular pattern (MAMP)-responsive synthetic promoters were generated with two cis-regulatory modules (CRM1 and CRM2) from the Arabidopsis thaliana WRKY30 promoter. Both modules harbour two W-boxes and one WT-box. Mutation analysis of the synthetic promoters and transient gene expression analysis in parsley protoplasts underline the importance of the W- and WT-boxes for MAMP-responsive gene expression and reveal the combinatorial requirement of at least two boxes for full MAMP responsivity. In the context of the native promoter, CRM1 is required for MAMP responsivity, while CRM2 alone is not sufficient. Yeast one-hybrid screenings using CRM1 with a transcription factor (TF) only prey library select only WRKY factors. Selection of WRKY26, 40, 41, and 70 requires the W-boxes. The WT-box is also required for selection of WRKY26 and 41 in yeast. In plant cells, WRKY26, 40, and 41 act as repressors of MAMP-responsive gene expression, whereas WRKY70 is an activator. To investigate whether the WT-box is also required for WRKY26 and 41 mediated gene expression in plant cells, both were converted into transcriptional activators by adding the GAL4 activating domain (AD). In contrast to yeast, transient gene expression in parsley protoplasts shows that only the W-boxes from CRM1 are required for WRKY41AD-activated reporter gene activity but not the WT-box. In addition, WRKY70-activated reporter gene activity in parsley cells does not require the WT-box of CRM1. The results demonstrate the importance of the WT-box as a new cis-regulatory sequence for MAMP-responsive gene expression. Based on these and earlier results, two types of WT-boxes are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkenbihl RP, Diezel C, Somssich IE (2012) Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 159:266–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolívar JC, Machens F, Brill Y, Romanov A, Bülow L, Hehl R (2014) ‘In silico expression analysis’, a novel PathoPlant web-tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences. Database (Oxford) 2014:bau030

  • Brkljacic J, Grotewold E (2016) Combinatorial control of plant gene expression. Biochim Biophys Acta 1860:31–40

    Article  PubMed  Google Scholar 

  • Bülow L, Schindler M, Hehl R (2007) PathoPlant: a platform for microarray expression data to analyze co-regulated genes involved in plant defense responses. Nucleic Acids Res 35:D841–D845

    Article  PubMed  Google Scholar 

  • Che D, Jensen S, Cai L, Liu JS (2005) BEST: binding-site estimation suite of tools. Bioinformatics 21:2909–2911

    Article  CAS  PubMed  Google Scholar 

  • Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutu C, Brandle J, Brown D, Brown K, Miki B, Simmonds J, Hegedus DD (2007) pORE: a modular binary vector series suited for both monocot and dicot plant transformation. Transgenic Res 16:771–781

    Article  CAS  PubMed  Google Scholar 

  • Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ (2014) WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J 79:810–823

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  PubMed  Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23:283–290

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    Article  PubMed  Google Scholar 

  • Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics 279:303–312

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalde M, Barth M, Somssich IE, Lippok B (2003) Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact 16:295–305

    Article  CAS  PubMed  Google Scholar 

  • Kanofsky K, Lehmeyer M, Schulze J, Hehl R (2016) Analysis of microbe-associated molecular pattern-responsive synthetic promoters with the parsley protoplast system. Methods Mol Biol 1482:163–174

    Article  PubMed  Google Scholar 

  • Kirsch C, Takamiya-Wik M, Schmelzer E, Hahlbrock K, Somssich IE (2000) A novel regulatory element involved in rapid activation of parsley ELI7 gene family members by fungal elicitor or pathogen infection. Mol Plant Pathol 1:243–251

    Article  CAS  PubMed  Google Scholar 

  • Koschmann J, Machens F, Becker M, Niemeyer J, Schulze J, Bülow L, Stahl DJ, Hehl R (2012) Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis. Plant Physiol 160:178–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233

    Article  CAS  PubMed  Google Scholar 

  • Lehmeyer M, Kanofsky K, Hanko EKR, Ahrendt S, Wehrs M, Machens F, Hehl R (2016) Functional dissection of a strong and specific microbe-associated molecular pattern-responsive synthetic promoter. Plant Biotechnol J 14:61–71

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Stewart CN Jr (2016) Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 37:36–44

    Article  PubMed  Google Scholar 

  • Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE (2015) Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 4:e07295

  • Machens F, Becker M, Umrath F, Hehl R (2014) Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana. Plant Mol Biol 84:371–385

    Article  CAS  PubMed  Google Scholar 

  • Mahony S, Benos PV (2007) STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 35:W253–W258

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N, Ikeda M, Takada S, Takiguchi Y, Kondou Y, Yoshizumi T, Fujita M, Shinozaki K, Matsui M, Ohme-Takagi M (2010) Efficient yeast one-/two-hybrid screening using a library composed only of transcription factors in Arabidopsis thaliana. Plant Cell Physiol 51:2145–2151

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer J, Ruhe J, Machens F, Stahl DJ, Hehl R (2014) Inducible expression of p50 from TMV for increased resistance to bacterial crown gall disease in tobacco. Plant Mol Biol 84:111–123

    Article  CAS  PubMed  Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449–460

    Article  PubMed  Google Scholar 

  • Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64:912–923

    Article  CAS  PubMed  Google Scholar 

  • Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–D827

    Article  CAS  PubMed  Google Scholar 

  • Reece-Hoyes JS, Marian Walhout AJ (2012) Yeast one-hybrid assays: a historical and technical perspective. Methods 57:441–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 6:361–378

    Article  Google Scholar 

  • Scarpeci TE, Zanor MI, Mueller-Roeber B, Valle EM (2013) Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Mol Biol 83:265–277

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KB (1998) Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol 118:1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenger-Haussels M, Weisshaar B (2000) Transactivation properties of parsley proline-rich bZIP transcription factors. Plant J 22:1–8

    Article  CAS  PubMed  Google Scholar 

  • Stahl DJ, Kloos DU, Hehl R (2004) A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet. BMC Biotechnol 4:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffens NO, Galuschka C, Schindler M, Bülow L, Hehl R (2004) AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome. Nucleic Acids Res 32:D368–D372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacheny A, Dieu M, Arnould T, Renard P (2013) Mass spectrometry-based identification of proteins interacting with nucleic acids. J Proteomics 94:89–109

    Article  CAS  PubMed  Google Scholar 

  • Van Aken O, Zhang B, Law S, Narsai R, Whelan J (2013) AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiol 162:254–271

    Article  PubMed  PubMed Central  Google Scholar 

  • van de Löcht U, Meier I, Hahlbrock K, Somssich IE (1990) A 125 bp promoter fragment is sufficient for strong elicitor-mediated gene activation in parsley. EMBO J 9:2945–2950

    PubMed  PubMed Central  Google Scholar 

  • Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, Najafabadi HS, Lambert SA, Mann I, Cook K, Zheng H, Goity A, van Bakel H, Lozano JC, Galli M, Lewsey MG, Huang E, Mukherjee T, Chen X, Reece-Hoyes JS, Govindarajan S, Shaulsky G, Walhout AJ, Bouget FY, Ratsch G, Larrondo LF, Ecker JR, Hughes TR (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158:1431–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res 39:D1118–D1122

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  CAS  PubMed  Google Scholar 

  • Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF, Shiu SH (2011) Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:14992–14997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Elke Faurie for excellent technical assistance. The TF-only yeast one-hybrid library of A. thaliana was obtained from the National Institute of Advanced Industrial Science and Technology (AIST), Japan. This work was supported by the German Ministry of Education and Research (BMBF) through Hochschulpakt 2020 (KK) and by the Vietnamese Ministry of Agriculture and Rural Development (DXD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Hehl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Zhanyuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanofsky, K., Bahlmann, AK., Hehl, R. et al. Combinatorial requirement of W- and WT-boxes in microbe-associated molecular pattern-responsive synthetic promoters. Plant Cell Rep 36, 971–986 (2017). https://doi.org/10.1007/s00299-017-2130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2130-3

Keywords

Navigation