Plant Cell Reports

, Volume 36, Issue 1, pp 151–162 | Cite as

Overexpression of PSK1, a SKP1-like gene homologue, from Paeonia suffruticosa, confers salinity tolerance in Arabidopsis

  • Qing Hao
  • Hongxu Ren
  • Jin Zhu
  • Liangsheng Wang
  • Shouchen Huang
  • Zheng’an Liu
  • Zhimin GaoEmail author
  • Qingyan ShuEmail author
Original Article


Key message

Our study is the first to demonstrate that PSK1 , a SKP1 -like gene homologue, is involved in salinity tolerance. Our functional characterization of PSK1 provides new insights into tree peony development.


A homologous gene of S-phase kinase-associated protein1 (SKP1) was cloned from tree peony (Paeonia suffruticosa) and denoted as PSK1. The 462-bp open reading frame of PSK1 was predicted to encode a protein comprising 153 amino acids, with a molecular mass of 17 kDa. The full-length gene was 1,634 bp long and included a large 904-bp intron. PSK1 transcription was detected in all tissues, with the highest level observed in sepals, followed by leaves. Under salinity stress, overexpression of PSK1 in Arabidopsis resulted in increased germination percentages, cotyledon greening, and fresh weights relative to wild-type plants. Furthermore, transgenic Arabidopsis lines containing 35S::PSK1 displayed increased expression of genes that would be essential for reproduction and growth under salinity stress: ASK1, LEAFY, FT, and CO involved in flower development and flowering time as well as P5CS, RAB18, DREB, and SOD1-3 contributing to salinity tolerance. Our functional characterization of PSK1 adds to global knowledge of the multiple functions of previously explored SKP1-like genes in plants and sheds light on the molecular mechanism underlying its role in salinity tolerance. Our findings also provide information on the function and molecular mechanism of PSK1 in tree peony flower development, thereby revealing a theoretical basis for regulation of flowering and conferral of salinity tolerance in tree peony.


SKP1 Paeonia suffruticosa PSK1 Salinity tolerance Flowering 



Cauliflower mosaic virus


Dehydration-responsive element-binding protein




Murashige and Skoog


Open reading frame


Δ1-Pyrroline-5-carboxylate synthase


Quantitative real-time PCR


Ras-related protein


Rapid amplification of cDNA ends


Reactive oxygen species


Reverse transcription-PCR


Superoxide dismutase


Wild type




Flowering locus T



This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 31272201 and 31471909).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2016_2066_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1 (XLSX 11 kb)
299_2016_2066_MOESM2_ESM.xlsx (12 kb)
Supplementary material 2 (XLSX 12 kb)
299_2016_2066_MOESM3_ESM.jpg (3 mb)
ESM_S3. Comparison of stress response of PSK1-overexpressing Arabidopsis transgenic plants (lines 7 - 9) and the WT. (A) Germination percentages of transgenic lines and WT plants calculated 1 days after keeping at 22 ºC in medium containing 0-125 mM NaCl. (B) Cotyledon greening rates of transgenic lines and WT plants growing in medium containing 0–125 mM NaCl for 1 week. (C) Root elongation measurement of 7-day-old plants maintained in medium for 1 week. Each column represents the average of three replicates, and the bar indicates SDs. The different characters above each column represent various significant differences at p < 0.05 (JPEG 3118 kb)
299_2016_2066_MOESM4_ESM.jpg (2.4 mb)
ESM_S4. Expression analysis of SOS1-3 in Arabidopsis plants (lines 7-9 and the WT) treated with 150 mM NaCl for 0–12 h. (A) SOS1 (B) SOS2 (C) SOS3. The different characters above each column represent various significant differences at p < 0.05 (JPEG 2450 kb)
299_2016_2066_MOESM5_ESM.xlsx (12 kb)
Supplementary material 5 (XLSX 12 kb)


  1. Bailey RW (1958) The reaction of pentoses with anthrone. Biochem J 68:669–672CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chai LJ, Biswas MK, Ge XX, Deng XX (2010) Isolation, characterization, and expression analysis of an SKP1-like gene from ‘Shatian’ Pummelo (Citrus grandis Osbeck). Plant Mol Biol Rep 28:569–577CrossRefGoogle Scholar
  3. Chen ZL, Yu Y, Liu LN, Xia GX (2007) Isolation, characterization and functional analysis of a cdc48 homologue from tobacco BY-2 cells. Progress Nat Sci 17:156–162CrossRefGoogle Scholar
  4. Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162(3):1566–1582CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5:e11335CrossRefPubMedPubMedCentralGoogle Scholar
  6. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743CrossRefPubMedGoogle Scholar
  7. Dezfulian MH, Soulliere DM, Dhaliwal RK, Sareen M, Crosby WL (2012) The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development. PLoS One 7:e50984CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dieterle M, Zhou YC, Schafer E, Funk M, Kretsch T (2001) EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev 15:939–944CrossRefPubMedPubMedCentralGoogle Scholar
  9. Du H, Wu J, Jia KX, Zeng QY, Bhuiyad MW, Su S, Shu QY, Ren HX, Liu ZA, Wang LS (2015) Methylation mediated by an anthocyanin O-methyltransferase, is involved in purple flower coloration in Paeonia. J Exp Bot 66:6563–6577CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gusti A, Baumberger N, Nowack M, Pusch S, Eisler H, Potuschak T, De Veylder L, Schnittger A, Genschik P (2009) The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development. PLoS One 4:e4780CrossRefPubMedPubMedCentralGoogle Scholar
  12. Han XY, Wang LS, Liu ZA, De Riek J, Shu QY (2008) Characterization of sequence-related amplified polymorphism marker analysis of tree peony bud sports. Sci Horti (Amsterdam) 115:261–267CrossRefGoogle Scholar
  13. Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797CrossRefPubMedGoogle Scholar
  14. Henricson A, Forslund K, Sonnhamme E (2010) Orthology confers intron position conservation. BMC Genom 11:412CrossRefGoogle Scholar
  15. Hong MJ, Kim DY, Seo YW (2013) SKP1-like-related genes interact with various F-box proteins and may form SCF complexes with Cullin-F-box proteins in wheat. Mol Biol Rep 40:969–981CrossRefPubMedGoogle Scholar
  16. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297CrossRefPubMedGoogle Scholar
  17. Kahloul S, HajSalahElBeji I, Boulaflous A, Ferchichi A, Kong H, Mouzeyar S, Bouzidi MF (2013) Structural, expression and interaction analysis of rice SKP1-like genes. DNA Res 20:67–78CrossRefPubMedGoogle Scholar
  18. Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352CrossRefPubMedGoogle Scholar
  19. Kong H, Leebens-Mack J, Ni W, dePamphilis CW, Ma H (2004) Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications. Mol Biol Evol 21:117–128CrossRefPubMedGoogle Scholar
  20. Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, de Pamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885CrossRefPubMedGoogle Scholar
  21. Kramer GF, Norman HA, Krizek DT, Mirecki RM (1991) Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochem 30:2101–2108CrossRefGoogle Scholar
  22. Kuroda H, Yanagawa Y, Takahashi N, Horii Y, Matsui M (2012) A comprehensive analysis of interaction and localization of Arabidopsis SKP1-like (ASK) and F-box (FBX) proteins. PLoS One 7e:50009Google Scholar
  23. Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:D142–D144CrossRefGoogle Scholar
  24. Li JJ (1999) Chinese Tree Peony and Herbaceous Peony. Chinese Forestry Press, Beijing, p 17Google Scholar
  25. Li C, Liang Y, Chen C, Li J, Xu Y, Xu Z, Ma H, Chong K (2006) Cloning and expression analysis of TSK1, a wheat SKP1 homologue, and functional comparison with Arabidopsis ASK1 in male meiosis and auxin signaling. Funct Plant Biol 33:381–390CrossRefGoogle Scholar
  26. Li ZX, Qin GW, He JH, Cao XY (2010) Comparative analysis of fatty acid composition in seed kernel and coat of Paeonia rockii seeds. Seed 29:34–36Google Scholar
  27. Li C, Liu Z, Zhang Q, Wang R, Xiao L, Ma H, Chong K, Xu Y (2012) SKP1 is involved in abscisic acid signaling to regulate seed germination, stomatal opening and root growth in Arabidopsis thaliana. Plant Cell Environ 35:952–965CrossRefPubMedGoogle Scholar
  28. Li SS, Yuan RY, Chen LG, Wang LS, Hao XH, Wang LJ, Zheng XC, Du H (2014) Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (Paeonia section Moutan DC.) cultivars by GC-MS. Food Chem 173:133–140CrossRefPubMedGoogle Scholar
  29. Li P, Miao HX, Ma YW, Wang L, Hu GB, Ye ZX, Zhao JT, Qin YH (2015) CrWSKP1, a SKP1-like gene, is Involved in the self-Incompatibility reaction of “Wuzishatangju” (Citrus reticulata Blanco). Int J Mol Sci 16:21695–21710CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liu F, Ni W, Griffith ME, Huang Z, Chang C, Peng W, Ma H, Xie D (2004) The ASK1 and ASK2 genes are essential for Arabidopsis early development. Plant Cell 16:5–20CrossRefPubMedPubMedCentralGoogle Scholar
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  32. Marrocco K, Lecureuil A, Nicolas P, Guerche P (2003) The Arabidopsis SKP1-like genes present a spectrum of expression profiles. Plant Mol Biol 527:15–727Google Scholar
  33. Matsumoto D, Yamane H, Abe K, Tao R (2012) Identification of a Skp1-like protein interaction with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus. Plant Physiol 159:1252–1262CrossRefPubMedPubMedCentralGoogle Scholar
  34. McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120–1130CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nayak S, Santiago FE, Jin H, Lin D, Schedl T, Kipreos ET (2002) The Caenorhabditis elegans Skp1-related gene family: diverse functions in cell proliferation, morphogenesis, and meiosis. Curr Biol 12:277–287CrossRefPubMedGoogle Scholar
  36. Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170CrossRefPubMedGoogle Scholar
  37. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301CrossRefPubMedGoogle Scholar
  38. Rogers SW, Well R, Rechsteiner M (1986) Amino acid sequences act as quantitative enchancers of gene expression in transgenic tobacco and potato plants. Plant Mol Biol 37:885–897Google Scholar
  39. Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, Pavletich NP (2000) Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408:381–386CrossRefPubMedGoogle Scholar
  40. Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81CrossRefPubMedGoogle Scholar
  41. Shu QY, Wischnitzki E, Liu ZA, Ren HX, Han XY, Hao Q, Gao FF, Xu SX, Wang LS (2009) Analysis and functional annotation of expressed sequence tags for Tree Peony for the understanding of molecular mechanism controlling flower bud development. Physiol Plant 135:436–449CrossRefPubMedGoogle Scholar
  42. Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329CrossRefPubMedGoogle Scholar
  43. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97CrossRefPubMedGoogle Scholar
  44. Takahashi N, Kuroda H, Kuromori T, Hirayama T, Seki M, Shinozaki K, Shimada H, Matsui M (2004) Expression and interaction analysis of Arabidopsis Skp1-related genes. Plant Cell Physiol 45:83–91CrossRefPubMedGoogle Scholar
  45. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4.1: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  46. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397CrossRefPubMedGoogle Scholar
  48. Wang X, Ni W, Ge X, Zhang J, Ma H, Cao KM (2006) Proteomic identification of potential target proteins regulated by an ASK1-mediated proteolysis pathway. Cell Res 16:489–498CrossRefPubMedGoogle Scholar
  49. Wang Q, Tao T, Han Y, Chen X, Fan Z, Li D, Yu J, Han C (2013) Nonstructural protein P7–2 encoded by Rice black-streaked dwarf virus interacts with SKP1, a core subunit of SCF ubiquitin ligase. Virol J 10(1):325CrossRefPubMedPubMedCentralGoogle Scholar
  50. Winkler AA, Goedegebure RH, Zonneveld BJ, Steensma HY, Hooykaas PJ (2000) Isolation and partial characterization of the Kluyveromyces lactis homologue of SKP1. Curr Genet 38:8–16CrossRefPubMedGoogle Scholar
  51. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094CrossRefPubMedGoogle Scholar
  52. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803CrossRefPubMedGoogle Scholar
  53. Yang M, Hu Y, Lodhi M, McCombie WR, Ma H (1999) The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA 96:11416–11421CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases the salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31CrossRefPubMedGoogle Scholar
  55. Yoshida A, Suzuki N, Nakano Y, Kawada M, Oho T, Koga T (2003) Development of a 5′ nuclease-based real-time PCR assay for quantitative detection of cariogenic dental pathogens Streptococcus mutans and Streptococcus sobrinus. J Clin Microbiol 41:4438–4441CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhang YQ, Wang CP, Lin QF, Gao FH, Ma Y, Zhang M, Lin YH, Ma QH, Hua XJ (2015) Genome-wide analysis of phylogeny, expression profile and sub-cellular localization of SKP1-Like genes in wild tomato. Plant Sci 238:105–114CrossRefPubMedGoogle Scholar
  57. Zhao D, Yang M, Solava J, Ma H (1999) The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev Genet 25:209–223CrossRefPubMedGoogle Scholar
  58. Zhao D, Ni W, Feng B, Han T, Petrasek MG, Ma H (2003) Members of the Arabidopsis-SKP1-like gene family exhibit a variety of expression patterns and may play diverse roles in Arabidopsis. Plant Physiol 133:203–217CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhao L, Huang J, Zhao ZH, Li Q, Sims TL, Xue YB (2010) The SKP1-like protein SSK1 is required for cross-pollen compatibility in S-RNase-based self-incompatibility. Plant J 62:52–63CrossRefPubMedGoogle Scholar
  60. Ziaf K, Loukehaich R, Gong P, Liu H, Han Q, Wang T, Li H, Ye Z (2011) A multiple stress responsive gene ERD15 from Solanum pennelli confers stress tolerance in tobacco. Plant Cell Physiol 52:1055–1067CrossRefPubMedGoogle Scholar
  61. Zsigmond L, Szepesi A, Tari I, Rigo´ G, Kira´ly A, Szabados L (2012) Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. Plant Sci 182:87–93CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qing Hao
    • 3
  • Hongxu Ren
    • 1
  • Jin Zhu
    • 1
    • 2
  • Liangsheng Wang
    • 1
  • Shouchen Huang
    • 3
  • Zheng’an Liu
    • 1
  • Zhimin Gao
    • 4
    Email author
  • Qingyan Shu
    • 1
    Email author
  1. 1.Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of BotanyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Landscape and Forestry CollegeQingdao Agricultural UniversityQingdaoChina
  4. 4.International Center for Bamboo and RattanKey Laboratory on the Science and Technology of Bamboo and RattanBeijingChina

Personalised recommendations