Skip to main content
Log in

Integration of omics approaches to understand oil/protein content during seed development in oilseed crops

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Oilseed crops, especially soybean (Glycine max) and canola/rapeseed (Brassica napus), produce seeds that are rich in both proteins and oils and that are major sources of energy and nutrition worldwide. Most of the nutritional content in the seed is accumulated in the embryo during the seed filling stages of seed development. Understanding the metabolic pathways that are active during seed filling and how they are regulated are essential prerequisites to crop improvement. In this review, we summarize various omics studies of soybean and canola/rapeseed during seed filling, with emphasis on oil and protein traits, to gain a systems-level understanding of seed development. Currently, most (80–85%) of the soybean and rapeseed reference genomes have been sequenced (950 and 850 megabases, respectively). Parallel to these efforts, extensive omics datasets from different seed filling stages have become available. Transcriptome and proteome studies have detected preponderance of starch metabolism and glycolysis enzymes to be the possible cause of higher oil in B. napus compared to other crops. Small RNAome studies performed during the seed filling stages have revealed miRNA-mediated regulation of transcription factors, with the suggestion that this interaction could be responsible for transitioning the seeds from embryogenesis to maturation. In addition, progress made in dissecting the regulation of de novo fatty acid synthesis and protein storage pathways is described. Advances in high-throughput omics and comprehensive tissue-specific analyses make this an exciting time to attempt knowledge-driven investigation of complex regulatory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Agrawal GK, Thelen JJ (2006) Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics 5:2044–2059

    Article  CAS  PubMed  Google Scholar 

  • Agrawal GK, Hajduch M, Graham K, Thelen JJ (2008) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148:504–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aitken A (2002) Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. Plant Mol Biol 50:993–1010

    Article  CAS  PubMed  Google Scholar 

  • Allen RS, Li J, Stahle MI, Dubroué A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai F, Settles AM (2015) Imprinting in plants as a mechanism to generate seed phenotypic diversity. Front Plant Sci. doi:10.3389/fpls.2014.00780

    Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisjuk L, Neuberger T, Schwender J et al (2013) Seed architecture shapes embryo metabolism in oilseed rape. Plant Cell 25:1625–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Brown R, Lemmon B, Nguyen H (2003) Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of Arabidopsis thaliana. Protoplasma 222:167–174

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S et al (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary J, Patil GB, Sonah H, Deshmukh RK, Vuong TD, Valliyodan B, Nguyen HT (2015) Expanding omics resources for improvement of soybean seed composition traits. Front Plant Sci. doi:10.3389/fpls.2015.01021

    PubMed  PubMed Central  Google Scholar 

  • Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR, Gillman JD (2016) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:1–14

    Article  CAS  Google Scholar 

  • Chen B, Niu F, Liu W-Z et al (2016) Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death. DNA Res 23:101–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrispeels MJ (1991) Sorting of proteins in the secretory system. Annu Rev Plant Biol 42:21–53

    Article  CAS  Google Scholar 

  • Clarke JD, Alexander DC, Ward DP, Ryals JA, Mitchell MW, Wulff JE, Guo L (2013) Assessment of genetically modified soybean in relation to natural variation in the soybean seed metabolome. Sci Rep. doi:10.1038/srep03082

    Google Scholar 

  • Collakova E, Aghamirzaie D, Fang Y et al (2013) Metabolic and transcriptional reprogramming in developing soybean (Glycine max) embryos. Metabolites 3:347–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  CAS  Google Scholar 

  • Demartini DR, Jain R, Agrawal G, Thelen JJ (2011) Proteomic comparison of plastids from developing embryos and leaves of Brassica napus. J Proteome Res 10:2226–2237

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Keller WA, Yan W, Georges F (2004) Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs. Planta 218:483–491

    Article  CAS  PubMed  Google Scholar 

  • Du H, Yang S-S, Liang Z, Feng B-R, Liu L, Huang Y-B, Tang Y-X (2012) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol. doi:10.1186/1471-2229-12-106

    PubMed  PubMed Central  Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    Article  CAS  PubMed  Google Scholar 

  • Fischer K, Weber A (2002) Transport of carbon in non-green plastids. Trends Plant Sci 7:345–351

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Fu N, Guo S et al (2009) Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genom. doi:10.1186/1471-2164-10-161

    Google Scholar 

  • Fulgosi H, Soll J, de Faria Maraschin S, Korthout HA, Wang M, Testerink C (2002) 14-3-3 proteins and plant development. Plant Mol Biol 50:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Gajardo HA, Wittkop B, Soto-Cerda B et al (2015) Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol Breeding 35:1–19

    Article  CAS  Google Scholar 

  • Gallardo K, Thompson R, Burstin J (2008) Reserve accumulation in legume seeds. C R Biol 331:755–762

    Article  CAS  PubMed  Google Scholar 

  • Gan L, C-y Zhang, X-d Wang et al (2013) Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content. J Proteome Res 12:4965–4978

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Jain M (2013) RNA-Seq for transcriptome analysis in non-model plants. Methods Mol Biol 1069:43–58

    Article  CAS  PubMed  Google Scholar 

  • Godovac-Zimmermann J, Kleiner O, Brown LR, Drukier AK (2005) Perspectives in spicing up proteomics with splicing. Proteomics 5:699–709

    Article  CAS  PubMed  Google Scholar 

  • Goettel W, Liu ZR, Xia J, Zhang WX, Zhao PX, An YQ (2014a) Systems and evolutionary characterization of microRNAs and their underlying regulatory networks in soybean cotyledons. PLoS One. doi:10.1371/journal.pone.0086153

    PubMed  PubMed Central  Google Scholar 

  • Goettel W, Xia E, Upchurch R, Wang ML, Chen P, An YQ (2014b) Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. BMC Genom. doi:10.1186/1471-2164-15-299

    Google Scholar 

  • Goldberg RB, De Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Mendenhall J, Huo Y, Lloyd A (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol 325:412–421

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38:D843–D846

    Article  CAS  PubMed  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141:32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajduch M, Casteel JE, Tang S, Hearne LB, Knapp S, Thelen JJ (2007) Proteomic analysis of near-isogenic sunflower varieties differing in seed oil traits. J Proteome Res 6:3232–3241

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lu C, Li Y, Deng Z, Fu B, Geng Z (2016) Discrimination of rapeseeds (Brassica napus L.) based on the content of erucic acid by 1H NMR. Eur Food Res Technol 242:441–447

    Article  CAS  Google Scholar 

  • Harada JJ, Barker SJ, Goldberg RB (1989) Soybean beta-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes. Plant Cell 1:415–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardtke CS, Ckurshumova W, Vidaurre DP et al (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Harrigan GG, Skogerson K, MacIsaac S, Bickel A, Perez T, Li X (2015) Application of 1H NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population. J Agric Food Chem 63:4690–4697

    Article  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JF, Breidenbach RW (1974) Proteins of soybean seeds II. Accumulation of the major protein components during seed development and maturation. Plant Physiol 53:747–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höglund A-S, Rödin J, Larsson E, Rask L (1992) Distribution of napin and cruciferin in developing rape seed embryos. Plant Physiol 98:509–515

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang DQ, Koh C, Feurtado JA, Tsang EWT, Cutler AJ (2013) MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genom. doi:10.1186/1471-2164-14-140

    Google Scholar 

  • Huber SC, Hardin SC (2004) Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Curr Opin Plant Biol 7:318–322

    Article  CAS  PubMed  Google Scholar 

  • Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genom. doi:10.1186/1471-2164-15-1

    Google Scholar 

  • Islam F, Rengifo J, Redden R, Basford K, Beebe SE (2003) Association between seed coat polyphenolics (tannins) and disease resistance in common bean. Plant Foods Hum Nutr 58:285–297

    Article  CAS  PubMed  Google Scholar 

  • Jin D, Wang Y, Zhao Y, Chen M (2013) MicroRNAs and their cross-talks in plant development. J Genet Genomics 40:161–170

    Article  CAS  PubMed  Google Scholar 

  • Jofuku KD, Den Boer B, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SI, Vodkin LO (2013) Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS One. doi:10.1371/journal.pone.0059270

    Google Scholar 

  • Joshi T, Yao Q, Franklin LD et al (2010) SoyMetDB: the soybean metabolome database. In: Bioinformatics and biomedicine (BIBM), 2010. IEEE, pp 203–208

  • Joshi T, Patil K, Fitzpatrick MR et al (2012) Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics. BMC Genom. doi:10.1186/1471-2164-13-S1-S15

    Google Scholar 

  • Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98:9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6:4586–4598

    Article  CAS  PubMed  Google Scholar 

  • Kersten B, Agrawal GK, Iwahashi H, Rakwal R (2006) Plant phosphoproteomics: a long road ahead. Proteomics 6:5517–5528

    Article  CAS  PubMed  Google Scholar 

  • Kohler C, Lafon-Placette C (2015) Evolution and function of epigenetic processes in the endosperm. Front Plant Sci. doi:10.3389/fpls.2015.00130

    Google Scholar 

  • Korber N, Bus A, Li J, Parkin IA, Wittkop B, Snowdon RJ, Stich B (2016) Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus. Front Plant Sci. doi:10.3389/fpls.2016.00386

    PubMed  PubMed Central  Google Scholar 

  • Korbes AP, Machado RD, Guzman F et al (2012) Identifying conserved and novel microRNAs in developing seeds of Brassica napus using deep sequencing. PLoS One. doi:10.1371/journal.pone.0050663

    Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. doi:10.1186/1746-4811-9-29

    PubMed  PubMed Central  Google Scholar 

  • Kortesniemi M, Vuorinen AL, Sinkkonen J, Yang B, Rajala A, Kallio H (2015) NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa). Food Chem 172:63–70

    Article  CAS  PubMed  Google Scholar 

  • Lafon-Placette C, Köhler C (2014) Embryo and endosperm, partners in seed development. Curr Opin Plant Biol 17:64–69

    Article  PubMed  Google Scholar 

  • Lam HM, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics to study legume seed development. Plant Physiol 144:562–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei MG, Reeck GR (1987) Two-dimensional electrophoretic analysis of the proteins of isolated soybean protein bodies and of the glycosylation of soybean proteins. J Agric Food Chem 35:296–300

    Article  CAS  Google Scholar 

  • Li L, Hur M, Lee JY et al (2015) A systems biology approach toward understanding seed composition in soybean. BMC Genom. doi:10.1186/1471-2164-16-S3-S9

    Google Scholar 

  • Li D, Liu Z, Gao L et al (2016) Genome-wide identification and characterization of microRNAs in developing grains of Zea mays L. PLoS One. doi:10.1371/journal.pone.0153168

    Google Scholar 

  • Libault M, Farmer A, Joshi T et al (2010) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63:86–99

    CAS  PubMed  Google Scholar 

  • Lin L, Allemekinders H, Dansby A, Campbell L, Durance-Tod S, Berger A, Jones PJ (2013) Evidence of health benefits of canola oil. Nutr Rev 71:370–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin H, Rao J, Shi J et al (2014) Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars. J Integr Plant Bio 56:826–836

    Article  CAS  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen HA, Zhao D (2010) The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J 62:416–428

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Liu Y, Yang X et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun. doi:10.1038/ncomms4930

    Google Scholar 

  • Lorenz C, Rolletschek H, Sunderhaus S, Braun H-P (2014) Brassica napus seed endosperm—metabolism and signaling in a dead end tissue. J Proteomics 108:382–426

    Article  CAS  PubMed  Google Scholar 

  • M-a Ohto, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102:3123–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M-a Ohto, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22:277–289

    Article  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinke D, Chen J, Beachy R (1981) Expression of storage-protein genes during soybean seed development. Planta 153:130–139

    Article  CAS  PubMed  Google Scholar 

  • Meyer LJ, Gao J, Xu D, Thelen JJ (2012) Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean. Plant Physiol 159:517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael TP, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81

    Article  CAS  PubMed  Google Scholar 

  • Miller SS, Bowman L-AA, Gijzen M, Miki BL (1999) Early development of the seed coat of soybean (Glycine max). Ann Bot 84:297–304

    Article  Google Scholar 

  • Moïse JA, Han S, Gudynaitę-Savitch L, Johnson DA, Miki BLA (2005) Seed coats: structure, development, composition, and biotechnology. In Vitro Cell Dev Biol-Pl 41:620–644

    Article  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2011) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    PubMed  Google Scholar 

  • Mukherji M (2005) Phosphoproteomics in analyzing signaling pathways. Expert Rev Proteomics 2:117–128

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi R, Saito K (2013) Metabolomics for unknown plant metabolites. Anal Bioanal Chem 405:5005–5011

    Article  CAS  PubMed  Google Scholar 

  • Narvel JM, Fehr WR, Welke GA (1998) Agronomic and seed traits of soybean lines lacking seed lipoxygenases. Crop Sci 38:926–928

    Article  Google Scholar 

  • Nielsen NC, Dickinson CD, Cho T-J et al (1989) Characterization of the glycinin gene family in soybean. Plant Cell 1:313–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Wu GZ, Ye R et al (2009) Global analysis of gene expression profiles in Brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsis thaliana. Mol Plant 2:1107–1122

    Article  CAS  PubMed  Google Scholar 

  • Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Gene Dev 24:2678–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton G, Harris JF (1975) Compositional changes in developing rape seed (Brassica napus L.). Planta 123:163–174

    Article  CAS  PubMed  Google Scholar 

  • Ohlrogge JB, Kuo T-M (1984) Control of lipid synthesis during soybean seed development: enzymic and immunochemical assay of acyl carrier protein. Plant Physiol 74:622–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa A, Nakamura Y, Ogura T et al (2006) Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiol 142:398–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa A, Matsuda F, Kusano M, Okazaki Y, Saito K (2008) Rice metabolomics. Rice 1:63–71

    Article  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rourke JA, Bolon YT, Bucciarelli B, Vance CP (2014) Legume genomics: understanding biology through DNA and RNA sequencing. Ann Bot 113:1107–1120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pawson T, Scott JD (2005) Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci 30:286–290

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng FY, Weselake RJ (2011) Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genom. doi:10.1186/1471-2164-12-286

    Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Pl 51:1–8

    Article  CAS  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radchuk V, Borisjuk L (2014) Physical, metabolic and developmental functions of the seed coat. Front Plant Sci. doi:10.3389/fpls.2014.00510

    PubMed  PubMed Central  Google Scholar 

  • Ripp KG, Viitanen PV, Hitz WD, Franceschi VR (1988) Identification of membrane protein associated with sucrose transport into cells of developing soybean cotyledons. Plant Physiol 88:1435–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubel A, Rinne R, Canvin D (1972) Protein, oil, and fatty acid in developing soybean seeds. Crop Sci 12:739–741

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schultz DJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis. In: Lipid biotechnology. CRC Press, pp 1–25

  • Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782

    Article  CAS  PubMed  Google Scholar 

  • Severin AJ, Woody JL, Bolon YT et al (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol. doi:10.1186/1471-2229-10-160

    PubMed  PubMed Central  Google Scholar 

  • Shamimuzzaman M, Vodkin L (2012) Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genom. doi:10.1186/1471-2164-13-310

    Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids 1. Annu Rev Plant Biol 49:611–641

    Article  CAS  Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  • Smith CW, Patton JG, Nadal-Ginard B (1989) Alternative splicing in the control of gene expression. Annu Rev Genet 23:527–577

    Article  CAS  PubMed  Google Scholar 

  • Song Q-X, Liu Y-F, Hu X-Y, Zhang W-K, Ma B, Chen S-Y, Zhang J-S (2011) Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol. doi:10.1186/1471-2229-11-5

    Google Scholar 

  • Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217

    Article  CAS  PubMed  Google Scholar 

  • Swatek KN, Graham K, Agrawal GK, Thelen JJ (2011) The 14-3-3 isoforms chi and epsilon differentially bind client proteins from developing Arabidopsis seed. J Proteome Res 10:4076–4087

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Xie Q, Xiang X et al (2015) Dynamic metabolic profiles and tissue-specific source effects on the metabolome of developing seeds of Brassica napus. PLoS One. doi:10.1371/journal.pone.0124794

    Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  CAS  PubMed  Google Scholar 

  • Thompson R, Burstin J, Gallardo K (2009) Post-genomics studies of developmental processes in legume seeds. Plant Physiol 151:1023–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voelker T, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Biol 52:335–361

    Article  CAS  Google Scholar 

  • Wang J-W, Wang L-J, Mao Y-B, Cai W-J, Xue H-W, Chen X-Y (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    Article  CAS  PubMed  Google Scholar 

  • Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Zhang L, Yin Y, Wu J, Yu L, Zhou Y, Li M (2015) Sequencing, de novo assembly and comparative analysis of Raphanus sativus transcriptome. Front Plant Sci. doi:10.3389/fpls.2015.00198

    Google Scholar 

  • Xia Z, Xu H, Zhai J, Li D, Luo H, He C, Huang X (2011) RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol 77:299–308

    Article  CAS  PubMed  Google Scholar 

  • Xu HM, Kong XD, Chen F, Huang JX, Lou XY, Zhao JY (2015) Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. BMC Genom. doi:10.1186/s12864-015-2062-7

    Google Scholar 

  • Ye CY, Xu H, Shen E et al (2014) Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean. Front Plant Sci. doi:10.3389/fpls.2014.00743

    Google Scholar 

  • Yu J, Zhang Z, Wei J, Ling Y, Xu W, Su Z (2014) SFGD: a comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways. BMC Genom. doi:10.1186/1471-2164-15-271

    Google Scholar 

  • Zabala G, Campos E, Varala KK et al (2012) Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max. BMC Plant Biol. doi:10.1186/1471-2229-12-177

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liang W, Shi J, Xu J, Zhang D (2013) MYB56 encoding a R2R3 MYB transcription factor regulates seed size in Arabidopsis thaliana. J Integr Plant Bio 55:1166–1178

    Article  CAS  Google Scholar 

  • Zhang H, Zhang J, Wei P et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol 12:797–807

    Article  CAS  Google Scholar 

  • Zhang XQ, Sun J, Cao XF, Song XW (2015) Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiol 169:2118–2128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rodrigo Sarria and Steve Rounsley for their support and advice, and Steve Rounsley and Cory Christensen for critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju Gupta.

Additional information

Communicated by N. Sreenivasulu.

Pudota B. Bhaskar, Shreedharan Sriram and Po-Hao Wang contributed equally to the review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Bhaskar, P.B., Sriram, S. et al. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. Plant Cell Rep 36, 637–652 (2017). https://doi.org/10.1007/s00299-016-2064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2064-1

Keywords

Navigation