Advertisement

Plant Cell Reports

, Volume 36, Issue 1, pp 61–79 | Cite as

Characterization of the LBD gene family in Brachypodium: a phylogenetic and transcriptional study

  • Magdolna Gombos
  • Zoltán Zombori
  • Mária Szécsényi
  • Györgyi Sándor
  • Hajnalka Kovács
  • János GyörgyeyEmail author
Original Article

Abstract

Key message

An unambiguous nomenclature is proposed for the twenty-eight-member LOB domain transcription factor family in Brachypodium . Expression analysis provides unique transcript patterns that are characteristic of a wide range of organs and plant parts.

Abstract

LOB (lateral organ boundaries)-domain proteins define a family of plant-specific transcription factors involved in developmental processes from embryogenesis to seed production. They play a crucial role in shaping the plant architecture through coordinating cell fate at meristem to organ boundaries. Despite their high potential importance, our knowledge of them is limited, especially in the case of monocots. In this study, we characterized LOB domain protein coding genes (LBDs) of Brachypodium distachyon, a model plant for grasses, and present their phylogenetic relationships and an overall spatial expression study. In the Brachypodium genome database, 28 LBDs were found and then classified based on the presence of highly conserved LOB domain motif. Their transcript amounts were measured via quantitative real-time RT-PCR in 37 different plant parts from root tip to generative organs. Comprehensive phylogenetic analysis suggests that there are neither Brachypodium- nor monocot-specific lineages among LBDs, but there are differences in terms of complexity of subclasses between monocots and dicots. Although LBDs in Brachypodium have wide variation of tissue-specific expression and relative transcript levels, overall expression patterns show similarity to their counterparts in other species. The varying transcript profiles we observed support the hypothesis that Brachypodium LBDs have diverse but conserved functions in plant organogenesis.

Keywords

Brachypodium distachyon Expression profile LOB domain gene family (LBD) Nomenclature Quantitative real-time RT-PCR Tissue specificity 

Notes

Acknowledgments

This research was supported by the Hungarian Scientific Research Foundation (OTKA-K76273 and OTKA-K109719) and the Hungarian Governmental Grant GINOP-2.3.2-15-2016-00001. The authors are grateful to Judit Györgyey Ries and John Ries for their correction of the English of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2016_2057_MOESM1_ESM.tif (30.7 mb)
Online Resource 1 Combined phylogenetic tree of LOB-domain proteins from rice (Oryza sativa sp. Japonica) (medium blue dots), maize (Zea mays) (dark blue dots), Arabidopsis thaliana (red dots) and Brachypodium distachyon (light blue dots). The unrooted NJ tree was constructed with MEGA6 software based on amino acid sequences of conserved domain motif of 28 B. distachyon, 43 A. thaliana, 35 O. sativa and 44 maize LOB-domain proteins. The numbers on the branches are local bootstrap values calculated with 1000 replicates. Subfamilies are indicated by colour arches (TIFF 31431 kb)
299_2016_2057_MOESM2_ESM.rtf (1.2 mb)
Online Resource 2 Multiple sequence alignment of amino acid sequences of conserved domain motif of LOB-domain proteins from O. sativa, Zea mays, A. thaliana and B. distachyon. Invariant residues are marked with *. Consensus amino acid residues conserved in more than 50 % of proteins are indicated by grey background, while residues conserved in more than 75 % of proteins are indicated with withe font colour on black background. Os01g39040-A and Os01g39040-B highlighted with red font colour are two different LOB-domain motifs of the same protein, but presented in this alignment separately. The numbers mark the starting and ending position of LOB-domain motifs in each protein (RTF 1213 kb)
299_2016_2057_MOESM3_ESM.tif (3.6 mb)
Online Resource 3 The relative transcript amount of all 28 LBD genes of B. distachyon in root tip (R1), root differentiation zone (R3), 2nd leaf blade (L2), 3rd stem node (N3), flowers 1–2 days before pollination (F1), seeds 10 days after pollination (E3) and anthers. Root tips, 2nd leaf blades and 3rd stem nodes were collected from 14 DAG (days after germination) old plantlets; flowers 1–2 days before pollination and anthers were collected from 28 DAG old plantlets, seeds 10 days after pollination (10 DAP) were harvested from 40–45 DAG old plants grown under normal condition. The levels of gene expression were determined by quantitative real-time RT-PCR; at first relative to average transcript amount of EF1-α and UBC18 genes and second by relative to average transcript amount of each LBD genes. Means ±SD are shown (n = 2). Diagrams marked with black star are parts of Figure 5. Corresponding numeric data are listed in Online Resource 6 (TIFF 3727 kb)
299_2016_2057_MOESM4_ESM.xls (32 kb)
Online Resource 4 List of primer sequences used for quantitative real-time RT-PCR measurements. Some supporting information (genome position of BdLBD genes; length, weight and isoelectronic points of encoded proteins) are also represented (XLS 31 kb)
299_2016_2057_MOESM5_ESM.xlsx (27 kb)
Online Resource 5 Log10-transformed relative transcript amount data corresponding to expression profile analysis of 28 BdLBD genes in 37 different plant parts. Presented data is from one biological replicate derived from approximately 200 plants (XLSX 26 kb)
299_2016_2057_MOESM6_ESM.xlsx (25 kb)
Online Resource 6 Relative transcript amount data corresponding to biological replication (n = 2) of the expression pattern of 28 BdLBD genes in seven selected samples (root tip (R1), root differentiation zone (R3), 2nd leaf blade (L2), 3rd stem node (N3), flowers 1–2 days before pollination (F1), seeds 10 days after pollination (E3) and anthers) (XLSX 25 kb)

References

  1. Ariel FD, Diet A, Crespi M, Chan RL (2010) The LOB-like transcription factor Mt LBD1 controls Medicago truncatula root architecture under salt stress. Plant Signal Behav 5:1666–1668. doi: 10.4161/psb.5.12.14020 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bell EM, W-c Lin, Husbands AY et al (2012) Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proc Natl Acad Sci USA 109:21146–21151. doi: 10.1073/pnas.1210789109 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Berckmans B, Vassileva V, Schmid SPC et al (2011) Auxin-Dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23:3671–3683. doi: 10.1105/tpc.111.088377 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Birnbaum KD, Alvarado AS (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710. doi: 10.1016/j.cell.2008.01.040 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691. doi: 10.1105/tpc.021410 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Borghi L, Bureau M, Rüdiger S (2007) Arabidopsis JAGGED LATERAL ORGANS Is expressed in boundaries and coordinates KNOX and PIN activity. Plant Cell 19:1795–1808. doi: 10.1105/tpc.106.047159 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18(3):574–585PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brutnell TP, Bennetzen JL, Vogel JP (2015) Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu Rev Plant Biol 66:465–485. doi: 10.1146/annurev-arplant-042811-105528 PubMedCrossRefGoogle Scholar
  9. Bureau M, Rast M, Illmer J, Rüdiger S (2010) JAGGED LATERAL ORGAN (JLO) controls auxin dependent patterning during development of the Arabidopsis embryo and root. Plant Mol Biol 74:479–491. doi: 10.1007/s11103-010-9688-2 PubMedCrossRefGoogle Scholar
  10. Cabrera J, Díaz-Manzano FE, Sanchez M et al (2014) A role for LATERAL ORGAN BOUNDARIES-DOMAIN 16 during the interaction Arabidopsis-Meloidogyne spp. provides a molecular link between lateral root and root-knot nematode feeding site development. New Phytol 203:632–645. doi: 10.1111/nph.12826 PubMedCrossRefGoogle Scholar
  11. Catalan P, Chalhoub B, Chochois V et al (2014) Update on the genomics and basic biology of Brachypodium. Trends Plant Sci 19:414–418. doi: 10.1016/j.tplants.2014.05.002 PubMedCrossRefGoogle Scholar
  12. Chanderbali AS, He F, Soltis PS, Soltis DE (2015) Out of the water: origin and diversification of the LBD gene family. Mol Biol Evol 32:1996–2000PubMedPubMedCentralCrossRefGoogle Scholar
  13. Coudert Y, Dievart A, Droc G, Gantet P (2013) ASL/LBD phylogeny suggests that genetic mechanisms of root initiation downstream of auxin are distinct in lycophytes and euphyllophytes. Mol Biol Evol 30:569–572PubMedCrossRefGoogle Scholar
  14. Coudert Y, Le VAT, Adam H et al (2015) Identification of CROWN ROOTLESS1-regulated genes in rice reveals specific and conserved elements of postembryonic root formation. New Phytol 206:243–254. doi: 10.1111/nph.13196 PubMedCrossRefGoogle Scholar
  15. Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) HemI: a toolkit for illustrating heatmaps. PLoS One 9:e111988. doi: 10.1371/journal.pone.0111988 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555PubMedPubMedCentralCrossRefGoogle Scholar
  17. Evans MMS (2007) The indeterminate gametophyte1 Gene of Maize Encodes a LOB Domain Protein Required for Embryo Sac and Leaf Development. Plant Cell 19:46–62. doi: 10.1105/tpc.106.047506 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22:1169–1180. doi: 10.1038/cr.2012.63 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Feng Z, Zhu J, Du X, Cui X (2012) Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana. Planta 236:1227–1237. doi: 10.1007/s00425-012-1673-3 PubMedCrossRefGoogle Scholar
  20. Girin T, David LC, Chardin C, Sibout R, Krapp A, Ferrario-Méry S, Daniel-Vedele F (2014) Brachypodium: a promising hub between model species and cereals. J Exp Bot 65:5683–5696PubMedCrossRefGoogle Scholar
  21. Goh T, Joi S, Mimura T, Fukaki H (2012) The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 139:883–893PubMedCrossRefGoogle Scholar
  22. Guo M, Thomas J, Collins G, Timmermans MCP (2008) Direct repression of KNOX Loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. Plant Cell 20:48–58. doi: 10.1105/tpc.107.056127 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hetz W, Hochholdinger F, Schwall M, Feix G (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J 10:845–857. doi: 10.1046/j.1365-313X.1996.10050845.x CrossRefGoogle Scholar
  24. Hong S-Y, Seo PJ, Yang M-S, Xiang F, Park C-M (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8:112. doi: 10.1186/1471-2229-8-112 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hu Y, Zhang J, Jia H et al (2014) Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci USA 111:E521–E529. doi: 10.1073/pnas.1313271111 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Husbands A, Bell EM, Shuai B, Smith HMS, Springer PS (2007) LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Res 35:6663–6671. doi: 10.1093/nar/gkm775 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Inukai Y, Sakamoto T, Ueguchi-Tanaka M et al (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–1396. doi: 10.1105/tpc.105.030981 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Iwakawa H, Ueno Y, Semiarti E et al (2002) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 43:467–478PubMedCrossRefGoogle Scholar
  29. Jaakola L, Pirttilä A, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203. doi: 10.1385/mb:19:2:201 PubMedCrossRefGoogle Scholar
  30. Kellogg EA (2015) Brachypodium distachyon as a genetic model system. Annu Rev Genet 49:1–20. doi: 10.1146/annurev-genet-112414-055135 PubMedCrossRefGoogle Scholar
  31. Kim M-J, Kim J (2012) Identification of nuclear localization signal in ASYMMETRIC LEAVES2-LIKE18/LATERAL ORGAN BOUNDARIES DOMAIN16 (ASL18/LBD16) from Arabidopsis. J Plant Physiol 169:1221–1226. doi: 10.1016/j.jplph.2012.04.004 PubMedCrossRefGoogle Scholar
  32. Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764. doi: 10.1126/science.3289117 PubMedCrossRefGoogle Scholar
  33. Lee HW, Kim NY, Lee DJ, Kim J (2009) LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol 151:1377–1389PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lee T-H, Tang H, Wang X, Paterson AH (2013) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:D1152–D1158. doi: 10.1093/nar/gks1104 PubMedCrossRefGoogle Scholar
  35. Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z et al (2008) DH1, a LOB domain-like protein required for glume formation in rice. Plant Mol Biol 66(5):491–502PubMedCrossRefGoogle Scholar
  36. Li C, Zou X, Zhang C, Shao Q, Liu J, Liu B et al (2016) OsLBD3-7 overexpression induced adaxially rolled leaves in rice. PLoS One 11(6):e0156413PubMedPubMedCentralCrossRefGoogle Scholar
  37. Liu H, Wang S, Yu X et al (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56. doi: 10.1111/j.1365-313X.2005.02434.x PubMedCrossRefGoogle Scholar
  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  39. Ma Y, Wang F, Guo J, Zhang X (2009) Rice OsAS2 gene, a member of LOB domain family, functions in the regulation of shoot differentiation and leaf development. J Plant Biol 52:374–381. doi: 10.1007/s12374-009-9048-4 CrossRefGoogle Scholar
  40. Majer C, Hochholdinger F (2011) Defining the boundaries: structure and function of LOB domain proteins. Trends Plant Sci 16:47–52. doi: 10.1016/j.tplants.2010.09.009 PubMedCrossRefGoogle Scholar
  41. Matsumura Y, Iwakawa H, Machida Y, Machida C (2009) Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Plant J 58:525–537. doi: 10.1111/j.1365-313X.2009.03797.x PubMedPubMedCentralCrossRefGoogle Scholar
  42. Naito T, Yamashino T, Kiba T, Koizumi N, Kojima M, Sakakibara H, Mizuno T (2007) A Link between Cytokinin and ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) that belongs to the AS2/LOB (LATERAL ORGAN BOUNDARIES) family genes in Arabidopsis thaliana. Biosci Biotechnol Biochem 71:1269–1278. doi: 10.1271/bbb.60681 PubMedCrossRefGoogle Scholar
  43. Oh SA, Park KS, Twell D, Park SK (2010) The SIDECAR POLLEN gene encodes a microspore-specific LOB/AS2 domain protein required for the correct timing and orientation of asymmetric cell division. Plant J 64:839–850. doi: 10.1111/j.1365-313X.2010.04374.x PubMedCrossRefGoogle Scholar
  44. Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130PubMedPubMedCentralCrossRefGoogle Scholar
  45. Opanowicz M, Vain P, Draper J, Parker D, Doonan JH (2008) Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci 13:172–177. doi: 10.1016/j.tplants.2008.01.007 PubMedCrossRefGoogle Scholar
  46. Pennington RT, Willis KJ, McElwain JC (2002) The evolution of plants. Ann Bot 90:678–679PubMedCentralCrossRefGoogle Scholar
  47. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedPubMedCentralCrossRefGoogle Scholar
  48. Phelps-Durr TL, Thomas J, Vahab P, Timmermans MCP (2005) Maize rough sheath2 and Its Arabidopsis Orthologue ASYMMETRIC LEAVES1 Interact with HIRA, a predicted Histone Chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell 17:2886–2898. doi: 10.1105/tpc.105.035477 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, Van de Peer Y, Vandepoele K (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21:3718–3731. doi: 10.1105/tpc.109.071506 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Proost S, Van Bel M, Vaneechoutte D, Van de Peer Y, Inzé D, Mueller-Roeber B, Vandepoele K (2015) PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res 43:D974–D981. doi: 10.1093/nar/gku986 PubMedCrossRefGoogle Scholar
  51. Rast MI, Rüdiger S (2008) The meristem-to-organ boundary: more than an extremity of anything. Curr Opin Genet Dev 18:287–294. doi: 10.1016/j.gde.2008.05.005 PubMedCrossRefGoogle Scholar
  52. Rast MI, Rüdiger S (2012) Arabidopsis JAGGED LATERAL ORGANS acts with ASYMMETRIC LEAVES2 to coordinate KNOX and PIN expression in shoot and root meristems. Plant Cell 24:2917–2933. doi: 10.1105/tpc.112.099978 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Rubin G, Tohge T, Matsuda F, Saito K, Scheible W-R (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584. doi: 10.1105/tpc.109.067041 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y (2001) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128:1771–1783PubMedGoogle Scholar
  55. Shuai B, Reynaga-Peña CG, Springer PS (2002) The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol 129:747–761PubMedPubMedCentralCrossRefGoogle Scholar
  56. Soyano T, Thitamadee S, Machida Y, Chua N-H (2008) ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis. Plant Cell 20:3359–3373. doi: 10.1105/tpc.108.061796 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Sun X, Feng Z, Meng L, Zhu J, Geitmann A (2013) Arabidopsis ASL11/LBD15 is involved in shoot apical meristem development and regulates WUS expression. Planta 237(5):1367–1378PubMedCrossRefGoogle Scholar
  58. Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M (2015) How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif 3:9–16. doi: 10.1016/j.bdq.2015.01.005 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Taramino G, Sauer M, Stauffer JL, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659. doi: 10.1111/j.1365-313X.2007.03075.x PubMedCrossRefGoogle Scholar
  61. Thatcher LF, Powell JJ, Aitken EAB, Kazan K, Manners JM (2012) The lateral organ boundaries domain transcription factor LBD20 functions in fusarium wilt susceptibility and jasmonate signaling in Arabidopsis. Plant Physiol 160:407–418. doi: 10.1104/pp.112.199067 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Vogel J, Bragg J (2009) Brachypodium distachyon, a new model for the Triticeae. In: Muehlbauer GJ, Feuillet C (eds) Genetics and genomics of the Triticeae, vol 7. Plant genetics and genomics: crops and models. Springer, USA, pp 427–449. doi: 10.1007/978-0-387-77489-3_16
  63. Vogel J, Garvin D, Mockler T, Schmutz J, Rokhsar D, Bevan M (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768. http://www.nature.com/nature/journal/v463/n7282/suppinfo/nature08747_S1.html
  64. Wang X, Zhang S, Su L, Liu X, Hao Y (2013) A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES Domain) gene family in Malus domestica with a functional characterization of MdLBD11. PLoS One 8:e57044. doi: 10.1371/journal.pone.0057044 PubMedPubMedCentralCrossRefGoogle Scholar
  65. W-c Lin, Shuai B, Springer PS (2003) The Arabidopsis LATERAL ORGAN BOUNDARIES—domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. Plant Cell 15:2241–2252. doi: 10.1105/tpc.014969 CrossRefGoogle Scholar
  66. Xu B, Li Z, Zhu Y, Wang H, Ma H, Dong A, Huang H (2008) Arabidopsis genes AS1, AS2, and JAG negatively regulate boundary-specifying genes to promote sepal and petal development. Plant Physiol 146:566–575. doi: 10.1104/pp.107.113787 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Xu C, Luo F, Hochholdinger F (2016) LOB domain proteins: beyond lateral organ boundaries. Trends Plant Sci 21(2):159–167PubMedCrossRefGoogle Scholar
  68. Yang Y, Yu X, Wu P (2006) Comparison and evolution analysis of two rice subspecies LATERAL ORGAN BOUNDARIES domain gene family and their evolutionary characterization from Arabidopsis. Mol Phylogenet Evol 39:248–262. doi: 10.1016/j.ympev.2005.09.016 PubMedCrossRefGoogle Scholar
  69. You J, Zhang L, Song B, Qi X, Chan Z (2015) Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon. PLoS One 10:e0122027. doi: 10.1371/journal.pone.0122027 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Zentella R, Zhang Z-L, Park M et al (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057. doi: 10.1105/tpc.107.054999 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Zhang Y-M, Zhang S-Z, Zheng C-C (2014) Genomewide analysis of LATERAL ORGAN BOUNDARIES domain gene family in Zea mays. J Genetics 93:79–91. doi: 10.1007/s12041-014-0342-7 CrossRefGoogle Scholar

Copyright information

© European Union  2016

Authors and Affiliations

  1. 1.Institute of Plant BiologyBiological Research CentreSzegedHungary

Personalised recommendations