Skip to main content
Log in

Rapid and efficient Agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A rapid and efficient Agrobacterium -mediated transformation system in sorghum has been developed employing standard binary vectors and bar gene as a selectable marker.

Abstract

Sorghum (Sorghum bicolor) is an important food and biofuel crop worldwide, for which improvements in genetic transformation are needed to study its biology and facilitate agronomic and commercial improvement. Here, we report optimization of regeneration and transformation of public sorghum genotype P898012 using standard binary vectors and bar gene as a selectable marker. The tissue culture regeneration time frame has been reduced to 7–12 weeks with a yield of over 18 plants per callus, and the optimized transformation system employing Agrobacterium tumefaciens strain AGL1 and the bar with a MAS promoter achieved an average frequency over 14 %. Of randomly analyzed independent transgenic events, 40–50 % carry single copy of integrated T-DNA. Some independent transgenic events were derived from the same embryogenic callus lines, but a 3:1 Mendelian segregation ratio was found in all transgenic events with single copy as estimated by Southern blots. The system described here should facilitate studies of sorghum biology and agronomic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Able JA, Rathus C, Godwin ID (2001) The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev Biol Plant 37:341–348

    Article  CAS  Google Scholar 

  • Cao S, Masilamany P, Li W, Pauls KP (2014) Agrobacterium tumefaciens-mediated transformation of corn (Zea mays L.) multiple shoots. Biotechnol Biotec Eq 28:208–216

    Article  CAS  Google Scholar 

  • Carvalho CHS, Zehr UB, Gunaratna N, Anderson J, Kononowicz HH, Hodges TK, Axtell JD (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    Article  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci 90:11212–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas AM, Kononowicz AK, Haan TG, Zhang L, Tomes DT, Bressan RA, Hasegawa PM (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev Biol-Plant 33:92–100

    Article  Google Scholar 

  • Chetty VJ, Ceballos N, Garcia D, Narváez-Vásquez J, Lopez W, Orozco-Cardenas ML (2013) Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep 32:239–247

    Article  CAS  PubMed  Google Scholar 

  • Chibani K, Wingsle G, Jacquot J-P, Gelhaye E, Rouhier N (2009) Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa. Mol Plant 2:308–322

    Article  CAS  PubMed  Google Scholar 

  • Cho M-J, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC III et al (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777

    Article  CAS  PubMed  Google Scholar 

  • Dahlberg J, Berenji J, Sikora V, Latkovic D (2011) Assessing sorghum [Sorghum bicolor (L.) Moench] germplasm for new traits: food, fuels and unique uses. Maydica 56:85–92

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 1:19–21

    Article  CAS  Google Scholar 

  • Do PT, Zhang ZJ (2015) Sorghum transformation: achievements, challenges, and perspectives. In: Azhakanandam K, Silverstone A, Daniell H, Davey MR (eds) Recent advancements in gene expression and enabling technologies in crop plants. Springer, New York, Heidelberg, Dordrecht, London, pp 291–312

    Google Scholar 

  • Gallie DR, Young TE (1994) The regulation of gene expression in transformed maize aleurone and endosperm protoplasts (analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression). Plant Physiol 106:929–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J 3:591–599

    Article  CAS  PubMed  Google Scholar 

  • Grootboom AW, OKennedy MM, Mkhonza NL, Kunert K, Chakauya E, Chikwamba RK (2008) In vitro culture and plant regeneration of sorghum genotypes using immature zygotic embryos as explant source. Intl J Bot 4:450–455

    Article  CAS  Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan H-Q, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444

    Article  CAS  PubMed  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeoung JM, Krishnaveni S, Muthukrishnan S, Trick HN, Liang GH (2002) Optimization of sorghum transformation parameters using genes for green fluorescent protein and β-glucuronidase as visual markers. Hereditas 137:20–28

    Article  CAS  PubMed  Google Scholar 

  • Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y (2006) Binary vectors and super-binary vectors. Methods Mol Biol 343:15–41

    CAS  PubMed  Google Scholar 

  • Liu G, Godwin ID (2012) Highly efficient sorghum transformation. Plant Cell Rep 31:999–1007

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu L, Wu X, Yin X, Morrand J, Chen X, Folk WR, Zhang ZJ (2009) Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tiss Organ Cult 99:97–108

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nguyen T-V, Thu TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum [Sorghum bicolor (L.) Moench] using an improved in vitro regeneration system. Plant Cell Tiss Organ Cult 91:155–164

    Article  CAS  Google Scholar 

  • Reed J, Privalle L, Powell L, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127–132

    Article  CAS  Google Scholar 

  • Shridhar J, Bhat RS, Bhat S, Kuruvinashetti MS (2010) Agrobacterium-mediated transformation studies in sorghum using an improved gfp reporter gene. J SAT Agri Res 8

  • Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tiss Organ Cult 75:1–18

    Article  CAS  Google Scholar 

  • Vain P, Finer KR, Engler DE, Pratt RC, Finer JJ (1996) Intron-mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L.). Plant Cell Rep 15:489–494

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Gowik U, Tang H, Bowers JE, Westhoff P, Paterson AH et al (2009) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 10:R68

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner CA, Biedrzycki ML, Jacobs SS, Wisser RJ, Caplan JL, Sherrier DJ (2014) An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol 166:1684–1687

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho M-J, Zhao Z-Y (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol-Plant 50:9–18

    Article  PubMed  Google Scholar 

  • Zhao Z, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Yinghua Huang (USDA-ARS, OK) for providing sorghum genotypes, Dr. Lu Lu for informative suggestions and Drs. David Braun, David Mendoza and Xi Xiong for helpful discussions. Thanks are also extended to Neng Wan for his help with greenhouse work and Cuong X. Nguyen for help with GUS assay. This research was supported by Vietnam Educational Foundation (VIED) (awarded to P.T. Do). The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyuan J. Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by B. Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2016_2019_MOESM1_ESM.pdf

Fig. S1 Sorghum root formation. a Sorghum root quality in different rooting media. b Root induction frequency for given timelines (PDF 23 kb)

299_2016_2019_MOESM2_ESM.tif

Fig. S2 Phenolic release of infected immature embryos on co-cultivation medium. a Filter paper treatment. b No filter paper treatments (TIFF 352 kb)

Supplementary material 3 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, P.T., Lee, H., Mookkan, M. et al. Rapid and efficient Agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker. Plant Cell Rep 35, 2065–2076 (2016). https://doi.org/10.1007/s00299-016-2019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2019-6

Keywords

Navigation