Plant Cell Reports

, Volume 35, Issue 10, pp 1991–2019 | Cite as

Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species

  • Yan-Qi Dong
  • Wei-Xing Zhao
  • Xiao-Hui Li
  • Xi-Cun Liu
  • Ning-Ning Gao
  • Jin-Hua Huang
  • Wen-Ying Wang
  • Xiao-Li Xu
  • Zhen-Hai TangEmail author


Haploids and doubled haploids are critical components of plant breeding. This review is focused on studies on haploids and double haploids inducted in cucurbits through in vitro pollination with irradiated pollen, unfertilized ovule/ovary culture, and anther/microspore culture during the last 30 years, as well as comprehensive analysis of the main factors of each process and comparison between chromosome doubling and ploidy identification methods, with special focus on the application of double haploids in plant breeding and genetics. This review identifies existing problems affecting the efficiency of androgenesis, gynogenesis, and parthenogenesis in cucurbit species. Donor plant genotypes and surrounding environments, developmental stages of explants, culture media, stress factors, and chromosome doubling and ploidy identification are compared at length and discussed as methodologies and protocols for androgenesis, gynogenesis, and parthenogenesis in haploid and double haploid production technologies.


Cucurbits Haploid Double haploid Pollination with irradiated pollen Unfertilized ovule/ovary culture Anther/microspore culture 



2,4-Dichlorophenoxyacetic acid




Cucumber basal medium


Cucumber mosaic virus


Chlorophenoxyacetic acid


Double haploid


Double haploid line


Enzyme-linked immunosorbent assay


Gibberellic acid


Indole-3-acetic acid




α-Naphthaleneacetic acid


Plant growth regulator




Random amplified polymorphic DNA


Restriction fragment length polymorphism


Single nucleotide polymorphism


Simple sequence repeats




Watermelon mosaic virus


Zucchini yellow mosaic virus



This work was supported by Natural Science Foundation of Henan Province (CN) (162102110099).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdollahi MR, Darbandi M, Hamidvand Y, Majdi M (2015) The influence of phytohormones, wheat ovary co-culture, and temperature stress on anther culture response of watermelon (Citrullus lanatus L.). Braz J Bot 38(3):447–456Google Scholar
  2. Abdollahi MR, Najafi S, Sarikhani H, Moosavi SS (2016) Induction and development of anther-derived gametic embryos in cucumber (Cucumis sativus L.) by optimizing the macronutrient and agar concentrations in culture medium. Turk J Biol 40:1–10CrossRefGoogle Scholar
  3. Antos M, Bułat E, Zawiślak E (2001) Cucumber (Cucumis sativus L.) haploids induction with use of X-rays. Folia Hort 13(1A):81–84Google Scholar
  4. Arafeh MO (2006) Production of double haploid squash plants. Cairo University, CairoGoogle Scholar
  5. Ari E, Ikten H, Gocmen M, Coskun R, Eren A (2010) Comparative evaluation of different embryo rescue techniques on parthenogenetic melon (Cucumis melo L.) fruits induced with irradiated pollen. Afr J Biotechnol 9(33):5347–5356Google Scholar
  6. Bajaj YPS (1990) In vitro production of haploids and their use in cell genetics and plant breeding. In: Bajaj YPS (ed) Haploids in crop improvement I. Springer, Berlin, pp 3–44CrossRefGoogle Scholar
  7. Baktemur G, Taşkın H, Büyükalaca S (2013) Comparison of different methods for separation of haploid embryo induced through irradiated pollen and their economic analysis in melon (Cucumis melo var. inodorus). Sci World J 10:1–7CrossRefGoogle Scholar
  8. Baktemur G, Yücel NK, Taskın H, Çömlekçioğlu S, Büyükalaca S (2014) Effects of different genotypes and gamma ray doses on haploidization using irradiated pollen technique in squash. Turk J Biol 38(3):318–327CrossRefGoogle Scholar
  9. Bal U, Sari N, Yilmaz H (2003) Effects of E20 and Ms based media on in vitro induction of axillary buds and shoot development from haploid cucumis melon microcuttings. Pak J Biol Sci 6(13):1130–1138CrossRefGoogle Scholar
  10. Beharav A, Cohen Y (1995) Effect of kinetin and GA3 on in vitro ovule embryo culture of Cucumis melo L. Plant Growth Regul 16(3):267–269CrossRefGoogle Scholar
  11. Bögre L, Calderini O, Binarova P, Mattauch M, Till S, Kieger S, Jonak C, Pollaschek C, Barker P, Huskisson NS, Hirt H, Heberle-Borsa E (1999) A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11:101–113PubMedPubMedCentralCrossRefGoogle Scholar
  12. Çağlar G, Abak K (1999a) In situ haploid embryo induction in cucumber (Cucumis sativus L.) after pollination by irradiated pollen. Turk J Agric For 23(EK1):63–72Google Scholar
  13. Çağlar G, Abak K (1999b) Obtention of in vitro haploid plants from in situ induced haploid embryos in cucumber (Cucumis sativus L.). Turk J Agric For 23(3):283–290Google Scholar
  14. Çağlar G, Abak K (1999c) Progress in the production of haploid embryos, plants and doubled haploids in cucumber (Cucumis sativus L.) by gamma irradiated pollen in Turkey. Acta Hort 492:317–322CrossRefGoogle Scholar
  15. Cecile D, Girard M, Lecoq H (2010) A novel natural mutation in HC-Pro responsible for mild symptomatology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) in cucurbits. Arch Virol 155(3):397–401CrossRefGoogle Scholar
  16. Chambonnet D, Dumas De Vaulx R (1985) Obtention of embryos and plants from in vitro culture of unfertilized ovules of Cucurbita pepo. Cucurbit genetics. Coop Rep 8:66Google Scholar
  17. Chee RP, Leskovar DI, Cantliffe DJ (1992) Optimizing embryogenic callus and embryo growth of a synthetic seed system for sweet potato by varying media nutrient concentrations. J Am Soc Hortic Sci 117:663–667Google Scholar
  18. Chen JF, Cui L, Malik AA, Mbira KG (2011) In vitro haploid and dihaploid production via unfertilized ovule culture. Plant Cell Tissue Org Cult 104(3):311–319CrossRefGoogle Scholar
  19. Chu CC, Wang CC, Sun CS, Chen H, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. J Sci China Math 18(5):659–668Google Scholar
  20. Claveria E, Garcia-Mas J, Dolcet-Sanjuan R (2005) Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. J Am Soc Hort Sci 130(4):555–560Google Scholar
  21. Cuny F, Roudot AC (1991) Germination et croissance pollinique in vitro du pollen de melon (Cucumis melo L.) apres irradiations gamma. Environ Exp Bot 31(3):277–283CrossRefGoogle Scholar
  22. Cuny F, Dumas de Vaulx R, Longhi B, Siadous R (1992) Analyse des plantes de melon (Cucumis melo L.) issues de croisements avec du pollen irradie a differentes doses. Agronomie 12(8):623–630Google Scholar
  23. Cuny F, Grotte M, Dumas de Vaulx R, Rieu A (1993) Effects of gamma irradiation of pollen on parthenogenetic haploid production in muskmelon (Cucumis melo L.). Environ Exp Bot 33(2):301–312Google Scholar
  24. Damicone JP, Edelson JV, Sherwood JL, Myers LD, Motes JE (2007) Effects of border crops and intercrops on control of cucurbit virus diseases. Am Phytopathol Soc 91(5):509–516Google Scholar
  25. Davies PA, Morton S (1998) A comparison of barley isolated microspore and anther culture and the influence of cell culture density. Plant Cell Rep 17(3):206–210CrossRefGoogle Scholar
  26. Deunff EL, Sauton A (1994) Effect of parthenocarpy on ovule development in cucumber (Cucumis sativus L.) after pollination with normal and irradiated pollen. Sex Plant Reprod 7(4):221–228CrossRefGoogle Scholar
  27. Diao WP, Jia YY, Song H, Zhang XQ, Lou QF, Chen JF (2009) Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenerants using SSR markers. Sci Hortic 119(3):246–251CrossRefGoogle Scholar
  28. Dolcet-Sanjuan R, Claveria E, Garcia-Mas J (2006) Cucumber (Cucumis sativus L.) dihaploid line production using in vitro rescue of in vivo induced parthenogenic embryos. Acta Hort 725(2):837–844Google Scholar
  29. Dryanovska OA (1985) Induced callus in vitro from ovaries and anthers of species from the Cucurbitaceae family. C R Acad Bulg Sci 38:1243–1244Google Scholar
  30. Dryanovska OA, Ilieva IN (1983) In vitro anther and ovule cultures in muskmelon (Cucumis melo L.). Bulg Acad Sci 36:1107–1110Google Scholar
  31. Du SL, Wei HJ, Wei AM, Ma DH, Huo ZR (1999) Haploid plantlet regeneration of cucumber by pollination with irradiated pollens. Sci Agric Sin 32(2):107Google Scholar
  32. Dumas de Vaulx R (1979) Obtention de plantes haploides chez le melon (Cucumis melo L.) apres pollinisation par Cucumis ficifolius A. Rich C R Acad Sci III-Vie 289:875–878Google Scholar
  33. Dunwell JM (1976) A comparative study of environmental and developmental factors which influence embryo induction and growth in cultured anthers of Nicotiana tabacum. Environ Exp Bot 16(2–3):109–118CrossRefGoogle Scholar
  34. Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424PubMedCrossRefGoogle Scholar
  35. Falconer MM, Seagull RW (1987) Amiprophos-methyl (APM): a rapid, reversible, anti-microtubule agent for plant cell cultures. Protoplasma 136(2–3):118–124CrossRefGoogle Scholar
  36. Faris NM, Niemirowicz-Szczytt K (1999) Cucumber (Cucumis sativus L.) embryo development in situ after pollination with irradiated pollen. Acta Biol Cra Bot 41(1):111–118Google Scholar
  37. Faris NM, Nikolova V, Niemirowicz-Szczytt K (1999) The effect of gamma irradiation dose on cucumber (Cucumis sativus L.) haploid embryo production. Acta Physiol Plant 21(4):391–396CrossRefGoogle Scholar
  38. Fattouh FA (2003) Double infection of a cucurbit host by zucchini yellow mosaic virus and cucumber mosaic virus. Plant Pathol J 2(2):85–90CrossRefGoogle Scholar
  39. Ferrie AMR, Caswell KL (2010) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Org Cult 104(3):301–309CrossRefGoogle Scholar
  40. Ficcadenti N, Sestili S, Annibali S, Marco MD, Schiavi M (1999) In vitro gynogenesis to induce haploid plants in melon (Cucumis melo L.). J Genet Breed 53(3):255–257Google Scholar
  41. Forster BP, Hebe rle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12(8):368–375PubMedCrossRefGoogle Scholar
  42. Gałązka J, Niemirowicz-Szczytt K (2013) Review of research on haploid production in cucumber and other cucurbits. Folia Hort 25(1):67–78Google Scholar
  43. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  44. Gémes-Juhász A, Jakše M (2005) Haploids in the improvement of miscellaneous crop species (Cucurbitaceae, Liliaceae, Asparagaceae, Chenopodiaceae, Araceae and Umbelliferae). In: Don Palmer CE, Keller WA, Kasha KJ (eds) Biotechnology in agriculture and forestry: haploids in crop improvement II. Springer, Berlin, pp 259–278Google Scholar
  45. Gémes-Juhász A, Balogh P, Ferenczy A, Kristóf Z (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep 21(2):105–111CrossRefGoogle Scholar
  46. Gémesné-Juhász A, Venczel G, Balogh P (1997) Haploid plant induction in zucchini (Cucurbita pepo L. convar. giromontiina Duch) and in cucumber (Cucumis sativus L.) lines through in vitro gynogenesis. Acta Hort 447:623–625CrossRefGoogle Scholar
  47. Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30(5):839–857PubMedCrossRefGoogle Scholar
  48. Godbole M, Murthy HN (2012a) In vitro production of haploids via parthenogenesis in culinary melon (cucumis melon var. acidulus). India. J Biotechnol 11(4):495–497Google Scholar
  49. Godbole M, Murthy HN (2012) Parthenogenetic haploid plants using gamma irradiated pollen in snapmelon (Cucumis melo var. momordica). Plant Cell Tiss Org Cult 109(1):167–170Google Scholar
  50. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte AJ (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 5(110):802–811CrossRefGoogle Scholar
  51. Gonzalo MJ, Claveria E, Monforte AJ, Dolcet-Sanjuan R (2011) Parthenogenic haploids in melon: generation and molecular characterization of a doubled haploid line population. J Am Soc Hort Sci 136(2):145–154Google Scholar
  52. Gürsöz N, Abak K, Pitrat M, Rode JC, Dumas de Vaulx R (1991) Obtention of haploid plants induced by irradiated pollen in watermelon (Citrillus lanatus L.). Cucurbit genetics. Coop Rep 4:109–110Google Scholar
  53. Hamidvand Y, Abdollahi MR, Chaichi M, Moosavi SS (2013) The effect of plant growth regulators on callogenesis and gametic embryogenesis from anther culture of cucumber (Cucumis sativus L.). Int J Agric Crop Sci 5(10):1089–1095Google Scholar
  54. Hansen NJP, Andersen SB (1995) In vitro chromosome doubling potential of colchicine, oryzalin, trifluralin, and APM in Brassica napus microspore culture. Euphytica 88(2):159–164CrossRefGoogle Scholar
  55. Kato A (2001) Heterofertilization exhibited by trifluralin-induced bicellular pollen on diploid and tetraploid maize crosses. Genome 44(6):1114–1121PubMedCrossRefGoogle Scholar
  56. Katoh N, Hagimori M, Iwai S (1993) Production of haploid plants of melon by pseudofertilized ovule culture. Plant Tiss Cult Lett 10(1):60–66CrossRefGoogle Scholar
  57. Koksal N, Yetisir H, Sari N, Abak K (2002) Comparison of different in vivo methods for chromosome duplication in muskmelon (Cucumis melo). Acta Hort 588:293–298CrossRefGoogle Scholar
  58. Koli SP, Murthy HN (2013) Haploid plant regeneration from unpollinated ovules of cucumis melo L. var. Conomon cv. Mudicode. Br Biotechnol J 3(4):605–613CrossRefGoogle Scholar
  59. Košmrlj K, Murovec J, Bohanec B (2013) Haploid Induction in hull-less seed pumpkin through parthenogenesis induced by X-ray-irradiated pollen. J Am Soc Hort Sci 138(4):310–316Google Scholar
  60. Košmrlj K, Kastelec D, Bohanec B (2014) Styrian oil pumpkin pollen germinability at higher irradiation doses: optimization of the in vitro germination protocol and irradiation procedure. Turk J Biol 38(4):516–522CrossRefGoogle Scholar
  61. Kumar HGA, Murthy HN (2004) Effect of sugars and amino acids on androgenesis of Cucumis sativus. Plant Cell Tiss Org Cult 78(3):201–208CrossRefGoogle Scholar
  62. Kumar HGA, Murthy HN, Paek KY (2003) Embryogenesis and plant regeneration from anther cultures of Cucumis sativus L. Sci Hortic 98(3):213–222CrossRefGoogle Scholar
  63. Kumar HGA, Ravishankar BV, Murthy HN (2004) The Influence of Polyamines on Androgenesis of Cucumis sativus L. Eur J Hortic Sci 69(5):201–205Google Scholar
  64. Kurtar ES, Balkaya A (2010) Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell Tissue Org Cult 102(3):267–277Google Scholar
  65. Kurtar ES, Sari N, Abak K (2002) Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica 127(3):335–344CrossRefGoogle Scholar
  66. Kurtar ES, Balkaya A, Ozbakir M, Ofluoglu T (2009) Induction of haploid embryo and plant regeneration via irradiated pollen technique in pumpkin (Cucurbita moschata Duchesne ex. Poir). Afr J Biotechnol 8(21):5944–5951CrossRefGoogle Scholar
  67. Kuzuya M, Hosoya K, Yashiro K, Tomita K, Ezura H (2003) Powdery mildew (Sphaerotheca fuliginea) resistance in melon is selectable at the haploid level. J Exp Bot 54(384):1069–1074PubMedCrossRefGoogle Scholar
  68. Kwack SN, Fujieda K (1988) Somatic embryogenesis in cultured unfertilized ovules of Cucurbita moschata. J Jpn Soc Hortic Sci 57(1):34–42CrossRefGoogle Scholar
  69. Lazarte JE, Sasser CC (1982) Asexual embryogenesis and plantlet development in anther culture of Cucumis sativus L. HortScience 17:88Google Scholar
  70. Lei C, Chen JF, Qian CT, Zhang YB, Song H (2004) Recovery of cucumber (Cucumis sativus L.) haploid plants through pollination by irradiated pollens and embryo culture. Acta Bot Boreali-Occident Sin 24(9):1739–1743Google Scholar
  71. Lei C, Chen JF, Qian CT, Zhang XQ, Zhang YB (2006) Studies on induction of haploid cucumbers by irradiated pollen pollination and their characterization. Sci Agric Sin 39(7):1428–1436Google Scholar
  72. Li JW, Si SW, Cheng JY, Li JX, Liu JQ (2013) Thidiazuron and silver nitrate enhanced gynogenesis of unfertilized ovule cultures of Cucumis sativus. Biol Plant 57(1):164–168CrossRefGoogle Scholar
  73. Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434CrossRefGoogle Scholar
  74. Lim W, Earle ED (2008) Effect of in vitro and in vivo colchicine treatments on pollen production and fruit recovery on melon plants obtained after pollination with irradiated pollen. Plant Cell Tiss Org Cult 95(1):115–124CrossRefGoogle Scholar
  75. Lim W, Earle ED (2009) Enhanced recovery of doubled haploid lines from parthenogenetic plants of melon (Cucumis melo L.). Plant Cell Tiss Org Cult 98:351–356CrossRefGoogle Scholar
  76. Lofti M, Salehi S (2008) Detection of cucumber parthenogenic haploid embryos by floating the immature seeds in liquid medium. In: Pitrat M (ed) Proceeding of IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon, France, pp 375–380Google Scholar
  77. Lofti M, Kashi A, Onsinejad R (1999) Induction of parthenogenetic embryos by irradiated pollen in cucumber. Acta Hort. 492:323–328Google Scholar
  78. Lofti M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and double haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21(11):1121–1128CrossRefGoogle Scholar
  79. Malik AA, Cui L, Zhang SX, Chen JF (2011) Efficiency of SSR makers for determining the origin of melon plantlets derived through unfertilized ovary culture. Hort Sci 38(1):27–34Google Scholar
  80. Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Kluwer Academic, LondonCrossRefGoogle Scholar
  81. Maraschin SF, Priester WD, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56(417):1711–1726PubMedCrossRefGoogle Scholar
  82. Masuda K, Kikuta Y, Okazawa YA (1981) A revision of the medium for somatic embryogenesis in carrot suspension culture. J Fac Agr Hokkaido Univ 60(3):183–193Google Scholar
  83. Mcgrath MT (2001) Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Dis 85(3):236–245CrossRefGoogle Scholar
  84. Metwally EI, Moustafa SA, EI-Sawy BI, Shalaby TA (1998a) Haploid plantlets derived by anther culture of Cucurbita pepo. Plant Cell Tiss Org Cult 52(3):171–176CrossRefGoogle Scholar
  85. Metwally EI, Moustafa SA, El-Sawy BI, Haroun SA, Shalaby TA (1998b) Production of haploid plants from in vitro culture of unpollinated ovules of Cucurbita pepo L. Plant Cell Tiss Org Cult 52(3):117–121CrossRefGoogle Scholar
  86. Min ZY, Li H, Zou T, Tong L, Cheng J, Sun XW (2016) Studies of in vitro culture and plant regeneration of unfertilized ovary of pumpkin. Chin Bull Bot 51(1):74–80Google Scholar
  87. Mohamed MF, Refaei EFS (2004) Enhanced haploids regeneration in anther culture of summer squash (Cucurbita pepo L.). Cucurbit genetics. Coop Rep 27:57–60Google Scholar
  88. Moqbeli E, Peyvast G, Hamidoghli Y, Olfati JA (2013) In vitro cucumber haploid line generation in several new cultivars. AsPac J Mol Biol Biotechnol 21(1):18–25Google Scholar
  89. Moussa H, Salem A (2009) Induction of parthenocarpy in watermelon (Citrullus lanatus) cultivars by gamma irradiation. Acta Agron Hung 57(2):137–148CrossRefGoogle Scholar
  90. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  91. Nasertorabi M, Madadkhah E, Moghbeli H, Roain A, Moghbeli E (2012) Enhanced production of doubled haploid lines from parthenogenetic Iranian melon plants obtained of irradiated pollen (Cucumis melo L.). Int Res J Appl Basic Sci 3(8):1595–1600Google Scholar
  92. Niemirowicz-Szczytt K, Faris NM, Nikolova V, Rakoczy-Troja nowska M, Malepszy S (1995) Optimization of cucumber (Cucumis sativus L.) haploid production and doubling. In: Lester (ed) Proceeding of Cucurbitaceae ’94, pp 169–171Google Scholar
  93. Palti J, Cohen Y (1980) Downy mildew of cucurbits (Pseudoperonospora cubensis): the fungus and its hosts, distribution, epidemiology and control. Phytoparasitica 8(2):109–147CrossRefGoogle Scholar
  94. Perez-Garcia A, Romero DD, Lopez-Ruiz F, De VA, Tores JA (2009) The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Mol Plant Pathol 10(2):153–160PubMedCrossRefGoogle Scholar
  95. Plapung P, Khamsukdee S, Potapohn N, Smitamana P (2014a) Screening for cucumber mosaic resistant lines from the ovule culture derived double haploid cucumbers. Am J Agric Biol Sci 9(3):261–269CrossRefGoogle Scholar
  96. Plapung P, Khumsukdee S, Smitamana P (2014b) Development of cucumber lines resistant to Cucumber mosaic virus by ovule culture. Int J Agric Technol 10(3):733–741Google Scholar
  97. Przyborowski JA (1996) Haploidy in cucumber (Cucumis sativus L.). In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants: volume 3—Important selected plants. Kluwer Academic, Dordrecht, pp 91–98CrossRefGoogle Scholar
  98. Przyborowski JA, Niemirowicz-Szczytt K (1994) Main factors affecting cucumber (Cucumis sativus L.) haploid embryo development and haploid plant characteristics. Plant Breed 112(1):70–75CrossRefGoogle Scholar
  99. Rakha MT, Metwally EI, Moustafa SA, Etman AA, Dewir YH (2012) Evaluation of regenerated strains from six Cucurbita interspecific hybrids obtained through anther and ovule in vitro cultures. Aust J Crop Sci 6(1):23–30Google Scholar
  100. Roberts-Oehlschlager SL, Dunwell JM (1990) Barley anther culture: pretreatment on mannitol stimulates production of microspore-derived embryos. Plant Cell Tiss Org Cult 20(3):235–240Google Scholar
  101. Sari N, Abak K (1996) Effect of colchicine treatment with different doses and periods on in vitro chromosome duplication in haploid watermelon. Turk J Agric For 20(6):555–559Google Scholar
  102. Sari N, Yetişir H (2002) Some agronomical characteristics of doubled haploid lines produced by irradiated pollen technique and parental diploid genotypes in melons. Turk J Agric For 26:311–317Google Scholar
  103. Sari N, Abak K, Pitrat M, Rode JC, Dumas de Vaulx R (1994) Induction of parthenogenetic haploid embryos after pollination by irradiated pollen in watermelon. HortScience 29(10):1189–1190Google Scholar
  104. Sari N, Abak K, Pitrat M (1999) Comparison of ploidy level screening methods in watermelon: Citrullus lanatus (Thunb.) Matsum. and Nakai. Sci Hortic 82(3):265–277Google Scholar
  105. Sari N, Solmaz I, Ekiz H, Yetisir H, Yucel S (2010a) New fusarium wilt resistant melon (Cucumis melo var. cantalupensis) varieties developed by dihaploidization: Sari F1, Yetisir F1, Solmaz F1, Emin F1 and Yucel F1. Acta Hort 871:267–271CrossRefGoogle Scholar
  106. Sari N, Solmaz I, Kasapoglu S, Gursoy I, Szamosi C, Unlu H, Park KS (2010b) Effect of different pollination dates with irradiated pollens on fruit set, haploid embryo induction and plant obtention in Turkish (Kirkagac, Yuva and Hasanbey) melons. Acta Hort 871(1):639–648CrossRefGoogle Scholar
  107. Sauton A (1988) Effect of season and genotype on gynogenetic haploid production in muskemlon, Cucumis melo L. Sci Hortic 35(88):71–75CrossRefGoogle Scholar
  108. Sauton A (1989) Haploid gynogenesis in Cucumis sativus induced by irradiated pollen. Cucurbit genetics. Coop Rep 12:22–23Google Scholar
  109. Sauton A, Dumas de Vaulx R (1987) Production of haploid plants in melon (Cucumis melo L.) as a result of gynogenesis induced by irradiated pollen. Agronomie 7(2):141–147Google Scholar
  110. Sauton A, Dumas de Vaulx R (1988) Doubled haploid production in melon (Cucumis melo L.). In: Proceedings of eucarpia meeting on cucurbit genetics and breeding. Avignon Monfavet, France, pp 119–128Google Scholar
  111. Savin F, Decomble V, Le Couvioir M, Hallard J (1988) The X-ray detection of haploid embryos arisen in muskmelon (Cucumis melo L.) seeds and resulting from a parthenogenetic development induced by irradiated pollen. Cucurbit Genet Coop Rep 11:39–42Google Scholar
  112. Sestili S, Ficcadenti N (1996) Irradiated pollen for haploid production. In: Jain JM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants: oil, ornamental and miscellaneous plants. Kluwer Academic, Dordrecht, pp 263–274Google Scholar
  113. Shail JW, Robinson RW (1987) Anther and ovule culture of Cucurbita. Cucurbit Genet Coop Rep 10:92Google Scholar
  114. Shalaby TA (2006) Embryogenesis and plantlets regeneration from anther culture of squash plants (Cucurbita pepo L.) as affected by different genotypes. J Agric Res Tanta Univ 32(1):173–183Google Scholar
  115. Shalaby TA (2007) Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Sci Hortic 115(1):1–6Google Scholar
  116. Siebel J, Pauls KP (1989) A comparison of anther and microspore culture as a breeding tool in Brassica napus. Theor Appl Genet 78(4):473–479PubMedCrossRefGoogle Scholar
  117. Śmiech M, Sztangret-Wiśniewska J, Galecka T, Korzeniewska A, Marzec L, Kolakowska G, Piskurewicz U, Niemirowicz-Szczytt K (2008) Potential use of RAPD markers in characteristics of cucumber (Cucumis sativus L.) haploids and double-haploids. Acta Soc Bot Pol 77(1):29–34Google Scholar
  118. Solmaz İ, Sarı N, Gürsoy I, Kasapoğlu S (2011) Comparison of in vivo and in vitro colchicine application for production of dihaploid ‘Kirkagac’ and ‘Yuva Hasanbey’ melons. Afr J Biotechnol 10(70):15717–15724CrossRefGoogle Scholar
  119. Song H, Lou QF, Luo XD, Wolukau JN, Diao WP, Qian CT, Chen JF (2007) Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant Cell Tiss Org Cult 90(3):245–254Google Scholar
  120. Sun SR, Zhai QH, Hu JB, Chen JF, Zhang P (2009) Effects of several physiological factors on embryo formation in unpollinated ovary culture of pumpkin (Cucurbita moschata Duch. ex Poiret). Plant Physiol Commun 45(10):977–980Google Scholar
  121. Suprunova T, Shmykova N (2008) In vitro induction of haploid plants in unpollinated ovules, anther and microspore culture of Cucumis sativus. In: Pitra t M (ed) Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon, France, pp 371–374Google Scholar
  122. Swaminathan MS, Singh MP (1958) X-ray induced somatic haploidy in watermelon. Curr Sci 27:63–64Google Scholar
  123. Sztangret-Wisniewska J, Galecka T, Korzeniewska A, Marzec L, Kolakowska G, Piskurewicz U, Śmiech M, Niemirowicz-Szczytt K (2006) Characteristics of double-haploid cucumber (Cucumis sativus L.) lines resistant to downy mildew (Pseudoperonospora cubensis [Berk. et Curt.] Rostovzev). Cucurbitaceae 515–526Google Scholar
  124. Tantasawat PA, Sorntip A, Poolsawat O, Chaowiset W, Pornbungkerd P (2015) Evaluation of factors affecting embryo-like structure and callus formation in unpollinated ovary culture of cucumber (Cucumis sativus). Int J Agric Biol 17(3):613–618CrossRefGoogle Scholar
  125. Taşkın H, Yücel NK, Baktemur G, Çömlekçioğlu S, Büyükalaca S (2013) Effects of different genotypes and gamma ray doses on haploidization with irradiated pollen technique in watermelon (Citrullus lanatus L.). Can J Plant Sci 93(6):1165–1168CrossRefGoogle Scholar
  126. Touraev A, Pfosser M, Vicente O, Heberle-Bors E (1996) Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta 200(1):144–152CrossRefGoogle Scholar
  127. Truong-Andre I (1988) In vitro haploid plants derived from pollination by irradiated pollen of cucumber. Proceedings of eucarpia meeting on cucurbit genetics and breeding. Avignon Monfavet, France, pp 143–144Google Scholar
  128. Wan Y, Duncan DR, Rayburn AL, Petolino JF, Widholm JM (1991) The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theor Appl Genet 81(2):205–211PubMedCrossRefGoogle Scholar
  129. Xie M, Qin LY, Pan JS, He HL, Wu AZ, Cai R (2005) Flower morphogenesis and microspore development versus anther culture of cucumber. Acta Bot Boreali-Occident Sin 25(6):1096–1100Google Scholar
  130. Xie B, Wang XF, Fan ZC (2006) Improved conditions of in vitro culture of unpollinated ovules and production of embryonary sac plants in summer squash (Cucurbita pepo L.). Sci Agric Sin 39(1):132–138Google Scholar
  131. Xue GR, Yu WY, Fei KW, Cui HN, Sun RX (1983) Watermelon plants derived by in vitro anther culture. Plant Physiol Commun 4:40–42Google Scholar
  132. Xue GR, Yu WY, Yang ZY, Sun RY (1988) The induction of watermelon pollen plants and a preliminary observation of the posterity. Hereditas 10(2):5–8Google Scholar
  133. Yashiro K, Hosoya K, Kuzuya M, Tomita K (2002) Efficient production of doubled haploid melon plants by modified colchicine treatment of parthenogenetic haploids. Acta Hort 588:335–338CrossRefGoogle Scholar
  134. Yetisir H, Sari N (2003) A new method for haploid muskmelon (Cucumis melo L.) dihaploidization. Sci Hortic 98:277–283CrossRefGoogle Scholar
  135. Zaki M, Dickinson H (1995) Modification of cell development in vitro: the effect of colchicine on anther and isolated microspore culture in Brassica napus. Plant Cell Tiss Org Cult 40(3):255–270CrossRefGoogle Scholar
  136. Zhan Y, Chen JF, Malik AA (2009) Embryoid induction and plant regeneration of cucumber (Cucumis sativus L.) through microspore culture. Acta Hortic Sin 36(2):221–226Google Scholar
  137. Zhang YB, Chen JF, Yi HP, Lei C, Wu MZ (2006) Induction of haploid melon (Cucumis melo) plants by pollination with irradiated pollens. J Fruit Sci 23(6):892–895Google Scholar
  138. Zhao J, Simmonds DH (1995) Application of trifluralin to embryogenic microspore cultures to generate doubled haploid plants in Brassica napus. Physiol Plant 95:304–309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yan-Qi Dong
    • 1
  • Wei-Xing Zhao
    • 2
  • Xiao-Hui Li
    • 2
  • Xi-Cun Liu
    • 1
  • Ning-Ning Gao
    • 2
  • Jin-Hua Huang
    • 1
  • Wen-Ying Wang
    • 1
  • Xiao-Li Xu
    • 2
  • Zhen-Hai Tang
    • 1
    Email author
  1. 1.Department of Vegetable Breeding and BiotechnologyXinxiang Academy of Agricultural SciencesXinxiangChina
  2. 2.Institute of HorticultureHenan Academy of Agricultural SciencesZhengzhouChina

Personalised recommendations