As pointed out, the regulation of biotechnology in the EU dealing with GMOs is in principle of both process- and product-oriented, but their interpretation is in practice predominantly focused on the production process and if this process is leading to a GMO or not. In contrast to this, in the US, the assessment of the risk posed by the resulting organisms to human beings, animals or the environment is predominantly based on the end product and not the technological process (NRC 1989). A strong precautionary principle is implemented in the US law concerning biotechnology but nevertheless the process during which a GMO is produced is not considered to be dangerous per se and neither is the transfer of genetic material between organisms according to the US law. In Canada, a different regulation concerning plants, called “plants with novel traits,” is present. This regulation is based on the Plant Protection Act from 1990 and solely considering the novel trait of a plant, regardless which technology was used to produce it (e.g., biotechnology, conventional breeding or mutagenesis) (The Plant Protection Act 1990).
The regulatory system working in the US has been developed over the last five decades, and already in 1984, a Coordinated Framework for the Regulation of Biotechnology was issued (Lynch and Vogel 2001). This document is still the key document on biotechnology in the USA. Three agencies, such as EPA (Environment Protection Agency), USDA (US Department of Agriculture) and FDA (Food and Drug Agency), became responsible for regulating biotechnology, including genetic engineering. The FDA is responsible for medical products derived from biotechnology, the USDA for transgenic plants and the EPA for pesticidal plants and genetically engineered microbial pesticides (e.g., Bt-toxin). Concerning transgenic plants, a fast growing number of events have been deregulated by the USDA, which can be found in the APHIS database (Animal and Plant Health Inspection Service). Starting in 1992, a total number of 121 events have to date undergone deregulation by the USDA, including 19 different plant species, such as apple, corn, cotton, potato, tomato and others. The agencies involved based their decision rather on the scientific data which have been collected in the frame of risk assessments with respect to possible risks for humans, animals or the environment than on the biotechnological process which produced the new trait. Therefore, in view of the US regulatory system, genome editing by ODM or SDN should not be a matter of regulation as long as no pest sequences are integrated in the plant genome. The pure editing process involving only base mutations should not be regulated, because it does not pose a new risk to humans or the environment as long as it does not code for any pest sequence. Sustaining this view, the USDA stated already in 2004 that ODM is comparable to mutagenesis and will be most likely not in the focus of regulation in the US (Wolt et al. 2015). The first example for approval of genome editing in plants which is still in the launch phase for the US is the canola event 5715 (Cibus Inc., San Diego). To handle GE and further new biotechnology developments, a memorandum was passed in 2015 in the US which claims for a modernization of the US regulatory system (Memorandum 2015). In this text beside other aspects, it is clearly pointed out that future biotechnology regulation in the US should be based on the best available science; it should be transparent and efficient and should promote public confidence in the oversight of the products. These goals will be reached by the establishment of a Biotechnology Working Group as part of the Emerging Technologies Interagency Policy Coordination Group (ETIPC). The group will consist out of members from the Executive Office, FDA, EPA and USDA and will be coordinated with other Federal agencies (Memorandum 2015).
A Canadian system for GMO regulation is in principle not existent, as there is no specific regulation for the evaluation of a specific production process. The decision if, for example, a new plant is dangerous for humans or the environment is solely based on its novel inherent trait (The Plant Protection Act 1990). The definition of a novel trait is given by the Canadian Food Inspection Agency: “A plant with a novel trait (PNT) is a plant that contains a trait which is both new to the Canadian environment and has the potential to affect the specific use and safety of the plant with respect to the environment and human health. These traits can be introduced using biotechnology, mutagenesis, or conventional breeding techniques.” (Canadian Food Inspection Agency 2015a). This is a very pragmatic view which can lead to the situation that plant varieties harboring a novel trait have to be evaluated for potential risks even if conventional breeding or mutagenesis was used. For instance, in the case of crop herbicide resistance phenotypes, these have been developed by conventional breeding, mutagenesis and transgenesis as well as genome editing and subsequently evaluated and approved by Canadian regulators (Canadian Food Inspection Agency 2015b; Wolt et al. 2015). The Plant Protection Act also covers the invasive potential of new plants, and one of its main objectives is to prevent import, export or spreading of pests in Canada. In principle, this way of legislation is the logical result of the precautionary concept, but in view of a long history of safe use of such plants, it is not ideal for breeders which are developing new varieties by conventional breeding processes like introgression breeding. In 2016, 100 different plant events involving biotechnical modifications have been approved by the CIFA (Canadian Food Inspection Agency) which are recorded as decision documents in the Guidance Document Repository (GDR) (http://www.inspection.gc.ca/plants/plants-with-novel-traits/approved-under-review/decision-documents/eng/1303704378026/1303704484236). Concerning the genome editing technology, the Canadian government already approved the above-mentioned canola plants generated using the ODM technology (Canola Event 5715, Cibus Inc., San Diego) and most likely will approve new plants made by the use of genome editing techniques, such as CRISPR/Cas9 or others, summarized as SDN techniques.
In view of the different regulation processes performed in different countries, GE is, on one hand, a new kind of biotechnology, but, on the other hand, highly predictable when it comes to the risks which can occur using the technology. The principal intrinsic risks of the GE process are the same as in conventional mutagenesis (unintended base mutations off-side the target locus often called off-target activity) but to a much lesser extent, as the side mutations of GE are lower by orders of magnitude (EFSA 2012).
Argentina is the third largest grower of genetically modified crops in the world by 2014 (GLRC 2014). The use of GMOs in agriculture and food is regulated by the general Law on Seeds and Phytogenetic Creations (LS) and by the Law on the Promotion of the Development and Production of Modern Biotechnology (LB). The LS is covering all issues affecting the commercialization of crops and their import or export. In respect to genetically modified seeds, an additional registration in the National Registry of Operators of Genetically Modified Plant Organisms is mandatory (Resolucion 46/2004 2004). The LB is covering the legal issues connected to the promotion of modern biotechnology in Argentina, including research and production projects. The responsible authority for release and commercialization of GMOs is the Secretary of Agriculture, Livestock, Fisheries and Food. The granting of a permit to release or commercialize a GMO in Argentina is done case by case and depending on its assessments in regard to biosafety standards, food safety standards and additionally on an evaluation of the impact a commercialized GMO will have on Argentina´s trade. This system is—as the US and Canadian—focused on the evaluation of the new trait of a given GMO than on its production process per se. In contrast to the EU where only an assessment of potential risks has to be performed, an additional risk/benefit analysis can influence the approval process in Argentina. As of May 2015, Argentina became the first country to make its resolution on the regulatory status of NPBTs publicly available. The resolution determines that all crops derived through the use of NPBTs, and thus modern biotechnology, are to be reviewed on a case-by-case basis. However, the definition of a GMO is still missing approval, and real-world cases will have to show the practicalities of the resolution (Schuttelaar and Partners 2015).
The authors welcome the Argentinean practice to offer researchers and applicants the possibility to discuss future risk assessment and regulation of plants produced by means of NPBTs with the regulators. In a case-by-case approach, it will be evaluated in advance if the particular plant will fall under the scope of the Argentinean GMO regulation or not. This valuable procedure will save an enormous waste of time and effort for both developers/researchers and regulators (Whelan and Lema 2015) and will provide the legal certainty which is missed in Europe to date.