Skip to main content

Consumer acceptance of food crops developed by genome editing

Abstract

One of the major problems regarding consumer acceptance of genetically modified organisms (GMOs) is the possibility that their transgenes could have adverse effects on the environment and/or human health. Genome editing, represented by the CRISPR/Cas9 system, can efficiently achieve transgene-free gene modifications and is anticipated to generate a wide spectrum of plants. However, the public attitude against GMOs suggests that people will initially be unlikely to accept these plants. We herein explored the bottlenecks of consumer acceptance of transgene-free food crops developed by genome editing and made some recommendations. People should not pursue a zero-risk bias regarding such crops. Developers are encouraged to produce cultivars with a trait that would satisfy consumer needs. Moreover, they should carefully investigate off-target mutations in resultant plants and initially refrain from agricultural use of multiplex genome editing for better risk–benefit communication. The government must consider their regulatory status and establish appropriate regulations if necessary. The government also should foster communication between the public and developers. If people are informed of the benefits of genome editing-mediated plant breeding and trust in the relevant regulations, and if careful risk–benefit communication and sincere considerations for the right to know approach are guaranteed, then such transgene-free crops could gradually be integrated into society.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  2. Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149

    CAS  Article  PubMed  Google Scholar 

  3. Araki M, Nojima K, Ishii T (2014) Caution required for handling genome editing technology. Trends Biotechnol 32:234–237

    CAS  Article  PubMed  Google Scholar 

  4. Barfoot P, Brookes G (2014) Key global environmental impacts of genetically modified (GM) crop use 1996-2012. GM Crops Food 5:149–160

    Article  PubMed  Google Scholar 

  5. Bartholomaeus A, Parrott W, Bondy G, Walker K (2013) The use of whole food animal studies in the safety assessment of genetically modified crops: limitations and recommendations. Crit Rev Toxicol 43(Suppl 2):1–24

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    CAS  Article  PubMed  Google Scholar 

  7. Brookes G, Barfoot P (2012) GM crops: global socio-economic and environmental impacts 1996–2010. PG Economics Ltd., UK

    Google Scholar 

  8. Burgos NR, Singh V, Tseng TM, Black H, Young ND, Huang Z, Hyma KE, Gealy DR, Caicedo AL (2014) The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice. Plant Physiol 166:1208–1220

    Article  PubMed  PubMed Central  Google Scholar 

  9. Busconi M, Rossi D, Lorenzoni C, Baldi G, Fogher C (2012) Spread of herbicide-resistant weedy rice (red rice, Oryza sativa L.) after 5 years of clearfield rice cultivation in Italy. Plant Biol (Stuttgart, Germany) 14:751–759

    CAS  Article  Google Scholar 

  10. Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:e0144591

    Article  PubMed  PubMed Central  Google Scholar 

  11. Camacho A, Van Deynze A, Chi-Ham C, Bennett AB (2014) Genetically engineered crops that fly under the US regulatory radar. Nat Biotechnol 32:1087–1091

    CAS  Article  PubMed  Google Scholar 

  12. Center_for_Food_Safety (2015) Environmental, Farmer, and Consumer Groups Demand Higher Standards for Genetically Engineered (GE) Crop Regulations. http://www.centerforfoodsafety.org/press-releases/3967/environmental-farmer-and-consumer-groups-demand-higher-standards-for-genetically-engineered-ge-crop-regulations. Accessed 19 Feb 2016

  13. Chen H, Lin Y (2013) Promise and issues of genetically modified crops. Curr Opin Plant Biol 16:255–260

    Article  PubMed  Google Scholar 

  14. Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2015) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  PubMed  Google Scholar 

  15. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339:819–823

    CAS  Article  Google Scholar 

  16. Davidson J (2010) GM plants: science, politics and EC regulations. Plant Sci 178:94–98

    Article  Google Scholar 

  17. EFSA_GMO_Panel_Working_Group_on_Animal_Feeding_Trials (2008) Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol 46:S2–S70

    Google Scholar 

  18. European_Academies’_Science_Advisory_Council (2015) Statement: New breeding techniques. http://www.easac.eu/fileadmin/PDF_s/reports_statements/Easac_14_NBT.pdf. Accessed 7 Mar 2016

  19. European_Plant_Science_Organisation (2015) Statement: Crop Genetic Improvement Technologies. http://www.epsoweb.org/file/2147. Accessed 7 Mar 2016

  20. European_Seed_Association (2015) Regulatory approaches to modern plant breeding - the case of mutagenesis and new gene editing technologies. https://www.euroseeds.eu/system/files/publications/files/esa_15.0543_0.pdf. Accessed 7 Mar 2015

  21. Friedman M, Rasooly R (2013) Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins 5:743–775

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. GM_Freeze (2016) The case for regulating Gene Edited crops. http://www.gmfreeze.org/news-releases/266/. Accessed 7 Mar 2016

  23. GMWATCH (2014) “Genome editing”: GM by another name. http://www.gmwatch.org/news/archive/2014/15546-genome-editing-gm-by-another-name. Accessed 19 Feb 2016

  24. Green_Peace (2015) Policy briefing Gene-editing of plants—GM through the back door? http://www.greenpeace.org/eu-unit/Global/eu-unit/reports-briefings/2015/Greenpeace_Gene-editing_30112015%20-%202.pdf. Accessed 4 Mar 2016

  25. Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J Cell Mol Biol 78:742–752

    CAS  Article  Google Scholar 

  26. Hashmi U, Shafqat S, Khan F, Majid M, Hussain H, Kazi AG, John R, Ahmad P (2015) Plant exomics: concepts, applications and methodologies in crop improvement. Plant Signal Behav 10:e976152

    Article  PubMed  Google Scholar 

  27. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    CAS  Article  PubMed  Google Scholar 

  28. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Huang S, Weigel D, Beachy RN, Li J (2016) A proposed regulatory framework for genome-edited crops. Nat Genet 48:109–111

    CAS  Article  PubMed  Google Scholar 

  30. IFOAM_EU (2015) New Plant Breeding Techniques Position paper. http://www.ifoam-eu.org/sites/default/files/ifoameu_policy_npbts_position_final_20151210.pdf. Accessed 4 Mar 2016

  31. Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82

    CAS  Article  PubMed  Google Scholar 

  32. Joung JK (2015) Unwanted mutations: standards needed for gene-editing errors. Nature 523:158

    CAS  Article  PubMed  Google Scholar 

  33. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    CAS  Article  PubMed  Google Scholar 

  34. Kershen DL (2015) Sustainability Council of New Zealand Trust v The Environmental Protection Authority: gene Editing Technologies and the Law. GM Crops Food. doi:10.1080/21645698.2015.1122859

    PubMed  Google Scholar 

  35. Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nature methods 12:237–243

    CAS  Article  PubMed  Google Scholar 

  36. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Keith Joung J (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    CAS  Article  PubMed  Google Scholar 

  37. Kling J (2014) Labeling for better or worse. Nat Biotech 32:1180–1183

    CAS  Article  Google Scholar 

  38. Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    CAS  Article  PubMed  Google Scholar 

  39. Lemaire O, Moneyron A, Masson JE (2010) “Interactive technology assessment” and beyond: the field trial of genetically modified grapevines at INRA-Colmar. PLoS Biol 8:e1000551

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    CAS  Article  PubMed  Google Scholar 

  41. Li Y, Hallerman EM, Liu Q, Wu K, Peng Y (2015) The development and status of Bt rice in China. Plant Biotechnol J. doi:10.1111/pbi.12464

    Google Scholar 

  42. Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KA, Guo Y (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science (New York, NY) 328:1151–1154

    CAS  Article  Google Scholar 

  43. Lucht JM (2015) Public acceptance of plant biotechnology and GM crops. Viruses 7:4254–4281

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ma L, Zhu F, Li Z, Zhang J, Li X, Dong J, Wang T (2015) TALEN-Based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS One 10:e0143877

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marshall A (2007) GM soybeans and health safety–a controversy reexamined. Nat Biotechnol 25:981–987

    CAS  Article  PubMed  Google Scholar 

  46. Nagamangala Kanchiswamy C, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015a) Looking forward to genetically edited fruit crops. Trends Biotechnol 33:62–64

    CAS  Article  PubMed  Google Scholar 

  47. Nagamangala Kanchiswamy C, Malnoy M, Velasco R, Kim JS, Viola R (2015b) Non-GMO genetically edited crop plants. Trends Biotechnol 33:489–491

    Article  Google Scholar 

  48. Pauwels K, De Keersmaecker SCJ, De Schrijver A, du Jardin P, Roosens NHC, Herman P (2015) Next-generation sequencing as a tool for the molecular characterisation and risk assessment of genetically modified plants: added value or not? Trends Food Sci Technol 45:319–326

    CAS  Article  Google Scholar 

  49. Ramessar K, Capell T, Twyman RM, Quemada H, Christou P (2008) Trace and traceability—a call for regulatory harmony. Nat Biotechnol 26:975–978

    CAS  Article  PubMed  Google Scholar 

  50. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Romeis J, McLean MA, Shelton AM (2013) When bad science makes good headlines: Bt maize and regulatory bans. Nat Biotechnol 31:386–387

    CAS  Article  PubMed  Google Scholar 

  52. Ryffel GU (2014) Transgene flow: facts, speculations and possible countermeasures. GM Crops Food 5:249–258

    Article  PubMed  Google Scholar 

  53. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    CAS  Article  PubMed  Google Scholar 

  54. Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13:791–800

    CAS  Article  PubMed  Google Scholar 

  55. Siegrist M (1999) A Causal model explaining the perception and acceptance of gene technology. J Appl Soc Psychol 29:2093–2106

    Article  Google Scholar 

  56. Siegrist M, Connor M, Keller C (2012) Trust, confidence, procedural fairness, outcome fairness, moral conviction, and the acceptance of GM field experiments. Risk Anal Off Publ Soc Risk Anal 32:1394–1403

    Article  Google Scholar 

  57. Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246–257

    CAS  Article  PubMed  Google Scholar 

  58. Tanaka Y (2004) Major psycological facotors affecting acceptance of gene-recombination technology. Risk Anal 24:1575–1583

    Article  PubMed  Google Scholar 

  59. The_Convention_on_Biological_Diversity (2016) The Cartagena Protocol on Biosafety https://bch.cbd.int/protocol/. Accessed 19 Jan 2016

  60. The_New_Zealand_Environmental_Protection_Authority (2015) Consultation on wording of ‘organisms not genetically modified’ regulations in the Hazardous Substances and New Organisms Act. http://www.epa.govt.nz/consultations/new-organisms/Pages/consultation-organisms-not-genetically-modified-regulations.aspx. Accessed 19 Jan 2016

  61. The_US_Library_of_Congress (2014a) Restrictions on Genetically Modified Organisms: New Zealand. http://www.loc.gov/law/help/restrictions-on-gmos/new-zealand.php. Accessed 19 Jan 2016

  62. The_US_Library_of_Congress (2014b ) Restrictions on Genetically Modified Organisms: Japan. http://www.loc.gov/law/help/restrictions-on-gmos/japan.php. Accessed 19 Jan 2016

  63. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197

    CAS  Article  PubMed  Google Scholar 

  64. Tsukaya H (2013) Design for controllability. EMBO Rep 14:3

    CAS  Article  PubMed  Google Scholar 

  65. Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:e1001877

    Article  PubMed  PubMed Central  Google Scholar 

  66. Waltz E (2015a) Nonbrowning GM apple cleared for market. Nat Biotechnol 33:326–327

    CAS  Article  PubMed  Google Scholar 

  67. Waltz E (2015b) USDA approves next-generation GM potato. Nat Biotechnol 33:12–13

    CAS  Article  PubMed  Google Scholar 

  68. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    CAS  Article  PubMed  Google Scholar 

  69. Weeks DP, Spalding MH, Yang B (2015) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J. doi:10.1111/pbi.12448:

    PubMed  Google Scholar 

  70. Whelan AI, Lema MA (2015) Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food. doi:10.1080/21645698.21642015.21114698

    PubMed  Google Scholar 

  71. Wolt JD, Wang K, Yang B (2015) The regulatory status of genome-edited crops. Plant Biotechnol J. doi:10.1111/pbi.12444:

    PubMed  Google Scholar 

  72. Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    CAS  Article  PubMed  Google Scholar 

  73. Wunderlich S, Gatto KA (2015) Consumer perception of genetically modified organisms and sources of information. Adv Nutr (Bethesda, Md) 6:842–851

    Article  Google Scholar 

  74. Zdziarski IM, Edwards JW, Carman JA, Haynes JI (2014) GM crops and the rat digestive tract: a critical review. Environ Int 73:423–433

    CAS  Article  PubMed  Google Scholar 

  75. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 163:759–771

    CAS  Article  PubMed  Google Scholar 

  76. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    CAS  Article  PubMed  Google Scholar 

  77. Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF, Yang B (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J Cell Mol Biol 82:632–643

    CAS  Article  Google Scholar 

  78. Zilberman D, Kaplan S, Kim E, Hochman G, Graff G (2013) Continents divided: understanding differences between Europe and North America in acceptance of GM crops. GM Crops Food 4:202–208

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Hokkaido University faculty grant to TI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Ishii.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Cardi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ishii, T., Araki, M. Consumer acceptance of food crops developed by genome editing. Plant Cell Rep 35, 1507–1518 (2016). https://doi.org/10.1007/s00299-016-1974-2

Download citation

Keywords

  • Genome editing
  • Crop
  • Food
  • GMO
  • Consumer
  • CRISPR/Cas9