Skip to main content
Log in

Chromosomal distribution of H3K4me2, H3K9me2 and 5-methylcytosine: variations associated with polyploidy and hybridization in Brachiaria (Poaceae)

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Assessment of chromosomal distribution of modified histones and 5-methylcytosine shown that there are diversification of chromosomal types among species of Brachiaria and its interspecific hybrids.

Abstract

Histone post-translational modifications and DNA methylation are epigenetic processes that are involved in structural and functional organization of the genome. This study compared the chromosomal distribution of modified histones and 5-methylcytosine (5-mCyt) in species and interspecific hybrids of Brachiaria with different ploidy levels and reproduction modes. The relation between H3K9me2 and 5-mCyt was observed in the nucleolus organizer region, centromeric central domain and pericentromeric region. H3K4me2 was detected in euchromatic domains, mainly in the terminal chromosomal regions. Comparison of chromosomal distribution among species and hybrids showed greater variation of chromosomal types for the H3K9me2 in B. decumbens (tetraploid and apomictic species) and the 963 hybrid, while, for the H3K4me2, the variation was higher in B. brizantha and B. decumbens (tetraploid and apomictic species) and 963 hybrid. The chromosome distribution of 5-mCyt was similar between B. brizantha and B. decumbens, which differ from the distribution observed in B. ruziziensis (diploid and sexual species). Significant alterations in DNA methylation were observed in the artificially tetraploidized B. ruziziensis and in the interspecific hybrids, possibly as result of hybridization and polyploidization processes. The monitoring of histone modifications and DNA methylation allowed categorizing nuclear and chromosomal distribution of these epigenetic marks, thus contributing to the knowledge of composition and structure of the genome/epigenome of Brachiaria species and hybrids. These data can be useful for speciation and genome evolution studies in genus Brachiaria, and represent important markers to explore relationships between genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amor DJ, Kalitsis P, Sumer H, Andy Choo KH (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14:359–368

    Article  CAS  PubMed  Google Scholar 

  • Anderson LK, Lai A, Stack SM, Rizzon C, Gaut BS (2006) Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res 16:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranov VS, Pendina AA, Kuznetsova TV et al (2005) Peculiarities of metaphase chromosome methylation pattern in pre-implantation human embryos. Tsitologiya 47:723–730

    CAS  Google Scholar 

  • Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 3:e3156

    Article  PubMed  PubMed Central  Google Scholar 

  • Chelysheva LA, Grandont L, Grelon M (2013) Immunolocalization of meiotic proteins in Brassicaceae: method 1. In: Pawlowski WP, Grelon M, Armstrong S (eds) Plant meiosis: methods and protocols. Springer Science+Business Media, New York, pp 93–101

    Chapter  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Ha M, Lackey E, Wang J, Chen ZJ (2008) RNAi of met1 reduces DNA methylation and induces genome-specific changes in gene expression and centromeric small RNA accumulation in Arabidopsis allopolyploids. Genetics 178:1845–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Shaolei LV, Meng Y (2010) Epigenetic performers in plants. Dev Growth Differ 52:555–566

    Article  CAS  PubMed  Google Scholar 

  • Feitoza L, Guerra M (2011) Different types of plant chromatin associated with modified histones H3 and H4 and methylated DNA. Genetica 139:305–314

    Article  Google Scholar 

  • Feng S, Jacobsen SE (2011) Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol 14:179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15:1–6

    Article  Google Scholar 

  • Fulnecek J, Matyasek R, Kovalík A (2009) Faithful inheritance of cytosine methylation patterns in repeated sequences of the allotetraploid tobacco correlates with the expression of DNA methyltransferase gene families from both parental genomes. Mol Genet Genomics 281:407–420

    Article  CAS  PubMed  Google Scholar 

  • Furusawa C, Kaneko K (2013) Epigenetic feedback regulation accelerates adaptation and evolution. PLoS One 8:e61251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Melendi P, Wells B, Beven A, Shaw PJ (2001) Single ribosomal transcription units are linear, compacted Christmas trees in plant nucleoli. Plant J 27:223–233

    Article  PubMed  Google Scholar 

  • He S, Yan S, Wang P, Zhu W, Wang X, Shen Y, Shao K, Xin H, Li S, Li L (2014) Comparative analysis of genome-wide chromosomal histone modification patterns in maize cultivars and their wild relatives. PLoS One 9:e97364

    Article  PubMed  PubMed Central  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wendel J (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365–379

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neves N, Delgado M, Silva M, Caperta A, Morais-Cecílio L, Viegas W (2005) Ribosomal DNA heterochromatin in plants. Cytogenet Genome Res 109:104–111

    Article  CAS  PubMed  Google Scholar 

  • Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci 104:6752–6757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira AV, Valle CB, Ferreira RP, Miles JW (2001) Melhoramento de forrageiras tropicais. In: Nass LL, Valois ACC, Melo IS, Inglis MCV (eds) Recursos genéticos e melhoramento de plantas. Cuiabá, Mato Grosso, pp 549–602

    Google Scholar 

  • Preuss S, Pikaard CS (2007) rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim Biophys Acta 1769:383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheritance during the cell cycle. Mol Cell Biol 10:192–206

    CAS  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91

    Article  CAS  PubMed  Google Scholar 

  • Renvoize SA, Clayton WD, Kabuye CHS (1996) Morphology, taxonomy and natural distribution of Brachiaria (Trin.) Griseb. In: Miles JW, Maass BL, Valle CB (eds) Brachiaria: biology, agronomy, and improvement. CIAT, Embrapa CNPGC, Cali, pp 1–15

  • Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:1–13

    Article  Google Scholar 

  • Rougier N, Bourc’his D, Gomes DM, Niveleau A, Plachot M, Pàldi A, Viegas-Péquiqnot E (1998) Chromosome methylation pattern during mammalian preimplantation development. Genes Dev 12:2108–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos FC, Guyot R, Valle CB, Chiari L, Techio VH, Heslop-Harrison P, Vanzela ALL (2015) Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosome Res 23:571–582

    Article  CAS  PubMed  Google Scholar 

  • Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plantas: relationship to small RNAs and histone modifications, and functions in transposons inactivation. Plant Cell Physiol 53:766–784

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Dawe RK (2006) Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 173:1571–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:6549–6559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza Sobrinho F (2005) Melhoramento de forrageiras no Brasil. In: Evangelista AR (ed) Forragicultura e pastagens: temas em evidência. Lavras, Minas Gerais, pp 65–120

    Google Scholar 

  • Suzuki G, Shiomi M, Morihana MY, Mukai Y (2010) DNA methylation and histone modification in onion chromosomes. Genes Genet Syst 85:377–382

    Article  PubMed  Google Scholar 

  • Timbó ALO, Souza PNC, Pereira RC et al (2014) Obtaining tetraploid plants of ruzigrass (Brachiaria ruziziensis). Rev Bras Zootec 43:127–131

    Article  Google Scholar 

  • Tsaftaris AS, Polidoros AN (2000) DNA methylation and plant breeding. Plant Breed Rev 18:87–176

    CAS  Google Scholar 

  • Valle CB, Pagliarini MS (2009) Biology, cytogenetics, and breeding of Brachiaria. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, Boca Raton, London, New York, pp 103–151

  • Zhang W, Lee HR, Koo DH, Jiang J (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhihui L, Xiang L, Yun G, Liu S, Tao M, Xiao H, Qiao Y, Zhang Y, Luo J (2011) Polyploidization and epigenetics. Chin Sci Bull 56:245–252

    Article  Google Scholar 

  • Zingg J-M, Jones PA (1997) Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 18:869–882

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq) and the Research Foundation of the State of Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vânia Helena Techio.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Vibha Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, C.M.P., Souza Sobrinho, F. & Techio, V.H. Chromosomal distribution of H3K4me2, H3K9me2 and 5-methylcytosine: variations associated with polyploidy and hybridization in Brachiaria (Poaceae). Plant Cell Rep 35, 1359–1369 (2016). https://doi.org/10.1007/s00299-016-1969-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-1969-z

Keywords

Navigation