Skip to main content
Log in

NtRING1, putative RING-finger E3 ligase protein, is a positive regulator of the early stages of elicitin-induced HR in tobacco

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

NtRING1 is a RING-finger protein with a putative E3 ligase activity. NtRING1 regulates HR establishment against different pathogens. Loss-/gain-of-function of NtRING1 altered early stages of HR phenotype establishment.

Abstract

Plant defence responses against pathogens often involve the restriction of pathogens by inducing a hypersensitive response (HR). cDNA clones DD11-39, DD38-11 and DD34-26 were previously obtained from a differential screen aimed at characterising tobacco genes with an elicitin-induced HR-specific pattern of expression. Our precedent observations suggested that DD11-39, DD38-11 and DD34-26 might play roles in the HR establishment. Only for DD11-39 a full-length cDNA sequence was obtained and the corresponding protein encoded for a type-HC RING-finger/putative E3 ligase protein which we termed NtRING1. The expression of NtRING1 was upregulated upon HR induction by elicitin, Ralstonia solanacearum, or tobacco mosaic virus (TMV) in tobacco. Silencing of NtRING1 remarkably delayed the establishment of elicitin-induced HR in tobacco as well as the expression of different early induction genes in tissues undergoing HR. Accordingly, transient overexpression of NtRING1 accelerated the HR launching upon elicitin treatment. Taking together, our data suggests that NtRING1 plays a functional role in the early establishment of HR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcaide-Loridan C, Jupin I (2012) Ubiquitin and plant viruses, let’s play together! Plant Physiol 160(1):72–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avila J, Devarenne TP (2013) Ubiquitination of the tomato cell death suppressor Adi3 by the RING E3 ubiquitin ligase AdBiL. Biochem Biophys Res Commun 430(1):119–124

    Article  CAS  PubMed  Google Scholar 

  • Azevedo C, Santos-Rosa MJ, Shirasu K (2001) The U-box protein family in plants. Trends Plant Sci 6(8):354–358

    Article  CAS  PubMed  Google Scholar 

  • Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295(5562):2073–2076

    Article  CAS  PubMed  Google Scholar 

  • Baillieul F, Genetet I, Kopp M, Saindrenan P, Fritig B, Kauffmann S (1995) A new elicitor of the hypersensitive response in tobacco: a fungal glycoprotein elicits cell death, expression of defence genes, production of salicylic acid, and induction of systemic acquired resistance. Plant J 8(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Banfield MJ (2015) Perturbation of host ubiquitin systems by plant pathogen/pest effector proteins. Cell Microbiol 17(1):18–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartel B, Citovsky V (2012) Focus on ubiquitin in plant biology. Plant Physiol 160(1):1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baulcombe DC (1999) Gene silencing: RNA makes RNA makes no protein. Curr Biol 9(16):R599–R601

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Stone S, Yang X, Antico J, Callis J, Ramonell KM, Somerville S (2010) ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. PLoS One 5(12):e14426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 95(26):15849–15854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18(8):1247–1256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cordelier S, de Ruffray P, Fritig B, Kauffmann S (2003) Biological and molecular comparison between localized and systemic acquired resistance induced in tobacco by a Phytophthora megasperma glycoprotein elicitin. Plant Mol Biol 51(1):109–118

    Article  CAS  PubMed  Google Scholar 

  • Costet L, Cordelier S, Dorey S, Baillieul F, Fritig B, Kauffmann S (1999) Relationship between localized acquired resistance (LAR) and the hypersensitive response (HR): HR is necessary for LAR to occur and salicylic acid is not sufficient to trigger LAR. Mol Plant Microbe Interact 12:655–662

    Article  CAS  Google Scholar 

  • Costet L, Fritig B, Kauffmann S (2002) Scopoletin expression in elicitor-treated and tobacco mosaic virus-infected tobacco plants. Physiol Plant 115(2):228–235

    Article  CAS  PubMed  Google Scholar 

  • Dorey S, Baillieul F, Pierrel MA, Saindrenan P, Fritig B, Kauffmann S (1997) Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol Plant Microbe Interact 10(5):646–655

    Article  CAS  Google Scholar 

  • Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JD (2000) cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12(6):963–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghannam A, Jacques A, De Ruffray P, Baillieul F, Kauffmann S (2005) Identification of tobacco ESTs with a hypersensitive response (HR)-specific pattern of expression and likely involved in the induction of the HR and/or localized acquired resistance (LAR). Plant Physiol Biochem 43(3):249–259

    Article  CAS  PubMed  Google Scholar 

  • Gossele V, Fache I, Meulewaeter F, Cornelissen M, Metzlaff M (2002) SVISS—a novel transient gene silencing system for gene function discovery and validation in tobacco plants. Plant J 32(5):859–866

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Kolodziejek I, Misas-Villamil J, Shindo T, Colby T, Verdoes M, Richau KH, Schmidt J, Overkleeft HS, van der Hoorn RA (2010) Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. Plant J 62(1):160–170

    Article  CAS  PubMed  Google Scholar 

  • Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, Nishimura M, Hara-Nishimura I (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev 23(21):2496–2506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He Q, McLellan H, Boevink PC, Sadanandom A, Xie C, Birch PR, Tian Z (2015) U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. J Exp Bot 66(11):3189–3199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heath MC (1998) Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 104:117–124

    Article  CAS  Google Scholar 

  • Heise A, Lippok B, Kirsch C, Hahlbrock K (2002) Two immediate-early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor-response element of AtCMPG1. Proc Natl Acad Sci USA 99(13):9049–9054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hondo D, Hase S, Kanayama Y, Yoshikawa N, Takenaka S, Takahashi H (2007) The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Mol Plant Microbe Interact 20(1):72–81

    Article  CAS  PubMed  Google Scholar 

  • Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD (2000) The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10(10):429–439

    Article  CAS  PubMed  Google Scholar 

  • Jacques A, Ghannam A, Erhardt M, de Ruffray P, Baillieul F, Kauffmann S (2006) NtLRP1, a tobacco leucine-rich repeat gene with a possible role as a modulator of the hypersensitive response. Mol Plant Microbe Interact 19(7):747–757

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki T, Nam J, Boyes DC, Holt BF 3rd, Hubert DA, Wiig A, Dangl JL (2005) A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant J 44(2):258–270

    Article  CAS  PubMed  Google Scholar 

  • Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463

    Article  CAS  PubMed  Google Scholar 

  • Kelley DR, Estelle M (2012) Ubiquitin-mediated control of plant hormone signaling. Plant Physiol 160(1):47–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim M, Ahn JW, Jin UH, Choi D, Paek KH, Pai HS (2003) Activation of the programmed cell death pathway by inhibition of proteasome function in plants. J Biol Chem 278(21):19406–19415

    Article  CAS  PubMed  Google Scholar 

  • Kirsch C, Logemann E, Lippok B, Schmelzer E, Hahlbrock K (2001) A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J 26(2):217–227

    Article  CAS  PubMed  Google Scholar 

  • Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structure. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  • Lee JC, Peter ME (2003) Regulation of apoptosis by ubiquitination. Immunol Rev 193:39–47

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Cho SK, Son O, Xu Z, Hwang I, Kim WT (2009) Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21(2):622–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Zhong S, Li G, Li Q, Mao B, Deng Y, Zhang H, Zeng L, Song F, He Z (2011) Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence. Cell Res 21(5):835–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin SS, Martin R, Mongrand S, Vandenabeele S, Chen KC, Jang IC, Chua NH (2008) RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis. Plant J 56(4):550–561

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Jin L, Huang X, Geng Y, Li F, Qin Q, Wang R, Ji S, Zhao S, Xie Q, Wei C, Xie C, Ding B, Li Y (2014) OsRFPH2-10, a ring-H2 finger E3 ubiquitin ligase, is involved in rice antiviral defense in the early stages of rice dwarf virus infection. Mol Plant 7(6):1057–1060

    Article  PubMed  Google Scholar 

  • Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96(20):11364–11369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marino D, Froidure S, Canonne J, Ben Khaled S, Khafif M, Pouzet C, Jauneau A, Roby D, Rivas S (2013) Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence. Nat Commun 4:1476

    Article  PubMed  Google Scholar 

  • Matsuda N, Nakano A (1998) RMA1, an Arabidopsis thaliana gene whose cDNA suppresses the yeast sec15 mutation, encodes a novel protein with a RING finger motif and a membrane anchor. Plant Cell Physiol 39(5):545–554

    Article  CAS  PubMed  Google Scholar 

  • Matsuda N, Suzuki T, Tanaka K, Nakano A (2001) Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J Cell Sci 114(Pt 10):1949–1957

    CAS  PubMed  Google Scholar 

  • Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S, Hayashi N, Takatsuji H (2013) Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. Plant J 73(2):302–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukoko Bopopi J, Vandeputte OM, Himanen K, Mol A, Vaessen Q, El Jaziri M, Baucher M (2010) Ectopic expression of PtaRHE1, encoding a poplar RING-H2 protein with E3 ligase activity, alters plant development and induces defence-related responses. J Exp Bot 61(1):297–310

    Article  PubMed Central  PubMed  Google Scholar 

  • Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59(3):501–520

    Article  CAS  PubMed  Google Scholar 

  • Ohi MD, Vander Kooi CW, Rosenberg JA, Chazin WJ, Gould KL (2003) Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol 10(4):250–255

    Article  CAS  PubMed  Google Scholar 

  • Ota Y, Samelson LE (1997) The product of the proto-oncogene c-cbl: a negative regulator of the Syk tyrosine kinase. Science 276(5311):418–420

    Article  CAS  PubMed  Google Scholar 

  • Pajerowska-Mukhtar K, Dong X (2009) A kiss of death—proteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection. Genes Dev 23(21):2449–2454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18(18):2237–2242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning Y, Wang R, Bellizzi M, Valent B, Wang GL (2012) The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24(11):4748–4762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17

    Article  PubMed Central  PubMed  Google Scholar 

  • Ross AF (1961) Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14:329–339

    Article  CAS  PubMed  Google Scholar 

  • Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012) The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol 196(1):13–28

    Article  CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Salinas-Mondragon RE, Garciduenas-Pina C, Guzman P (1999) Early elicitor induction in members of a novel multigene family coding for highly related RING-H2 proteins in Arabidopsis thaliana. Plant Mol Biol 40(4):579–590

    Article  CAS  PubMed  Google Scholar 

  • Saurin AJ, Borden KL, Boddy MN, Freemont PS (1996) Does this have a familiar RING? Trends Biochem Sci 21(6):208–214

    Article  CAS  PubMed  Google Scholar 

  • Shabek N, Zheng N (2014) Plant ubiquitin ligases as signaling hubs. Nat Struct Mol Biol 21(4):293–296

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K, Schulze-Lefert P (2000) Regulators of cell death in disease resistance. Plant Mol Biol 44(3):371–385

    Article  CAS  PubMed  Google Scholar 

  • Son O, Cho SK, Kim SJ, Kim WT (2010) In vitro and in vivo interaction of AtRma2 E3 ubiquitin ligase and auxin binding protein 1. Biochem Biophys Res Commun 393(3):492–497

    Article  CAS  PubMed  Google Scholar 

  • Stone SL (2014) The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci 5:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137(1):13–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suty L, Lequeu J, Lancon A, Etienne P, Petitot AS, Blein JP (2003) Preferential induction of 20S proteasome subunits during elicitation of plant defense reactions: towards the characterization of “plant defense proteasomes”. Int J Biochem Cell Biol 35(5):637–650

    Article  CAS  PubMed  Google Scholar 

  • Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, Minami E (2002) EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. Plant J 30(4):447–455

    Article  CAS  PubMed  Google Scholar 

  • Thiel H, Hleibieh K, Gilmer D, Varrelmann M (2012) The P25 pathogenicity factor of Beet necrotic yellow vein virus targets the sugar beet 26S proteasome involved in the induction of a hypersensitive resistance response via interaction with an F-box protein. Mol Plant Microbe Interact 25(8):1058–1072

    Article  CAS  PubMed  Google Scholar 

  • Trujillo M, Shirasu K (2010) Ubiquitination in plant immunity. Curr Opin Plant Biol 13(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, Maclean D, Takken FL, Jones JD (2008) The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20(3):697–719

    Article  PubMed Central  PubMed  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33(5):949–956

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Chen H, Curtis C, Fu ZQ (2014) Go in for the kill. Virulence 5(7):710–721

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang CW, Gonzalez-Lamothe R, Ewan RA, Rowland O, Yoshioka H, Shenton M, Ye H, O’Donnell E, Jones JD, Sadanandom A (2006) The E3 ubiquitin ligase activity of arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 18(4):1084–1098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokouchi M, Kondo T, Houghton A, Bartkiewicz M, Horne WC, Zhang H, Yoshimura A, Baron R (1999) Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J Biol Chem 274(44):31707–31712

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Xu W, Wang J, Wang L, Yao W, Yang Y, Xu Y, Ma F, Du Y, Wang Y (2013) The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. New Phytol 200(3):834–846

    Article  CAS  PubMed  Google Scholar 

  • Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16(10):2795–2808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000) Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102(4):533–539

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Michael Metzlaff (Bayer Crop Science) for providing SVISS system. A. Ghannam was thankfully supported by a PhD fellowship from Atomic Energy Commission of Syria, Department of Molecular Biology and Biotechnology. A. Jacques was supported by a PhD fellowship from the French ministry of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ghannam.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by P. Puigdomenech.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2015_1893_MOESM1_ESM.jpg

Supplementary material 1 (JPEG 682 kb) Figure S1. NtRING1 sequence Analyses. (A) cDNA sequence and deduced primary structure of NtRING1. Amino acids involved in the different structural domains are shown as follows: in the black box those of RING finger domain; in the grey box those of membrane anchor domain. (B) Hydrophobicity profile of NtRING1. The bar indicates a putative membrane anchoring domain. (C) Amino acid sequence alignment of NtRING1 and AtRMA1 (Arabidopsis thaliana RING finger protein with membrane anchor 1, AAO50721). The RING-finger domain is highlighted in black and the anchoring domain is in grey. Conserved residues are shown on the bottom line: identical amino acids are indicated by asterisks and similar amino acids by dots.

299_2015_1893_MOESM2_ESM.jpg

Supplementary material 2 (JPEG 20 kb). Figure S2. Three dimensional structure of NtRING1 RING-finger domain. (A) Amino acid alignment of NtRING1RING finger domain and the template of 4ktp.1.B of the protein TRIM5alpha E3 ligase. The RING finger domain residues are highlighted in orange. (B) Homology model showing the overall fold of RING-finger domain of NtRING1 and TRIM5alpha E3 ligase. The two Zinc ions are shown as rose small circles. Structure representation was done using SWISS MODEL online software (Bordoli et al. 2009).

299_2015_1893_MOESM3_ESM.jpg

Supplementary material 3 (JPEG 43 kb) Figure S3. Monitoring of electrolyte leakage during HR induced by infiltration of β-megaspermin in NtRING1 Silenced tobacco leaf tissues. NtRING1 (triangles) and controls (squares) were silenced in tobacco leaf tissue using SVISS technology (S-NtRING1 = Silenced NtRING1). Fifteen days after silencing, treated tissues were infiltrated with 10 nM β-megaspermin (closed symbols) or water (open symbols) as control. Electrolyte leakage was then measured from leaf discs punched out at different times after treatments (each hour from 0 to 12 h). Electrolyte leakage is expressed as the conductivity of tissues. Student t test was applied and asterisks indicate a statistical difference at P < 0.05 on each sample mean. The error bars correspond to the 95 % confidence interval calculated from the Student t test.

Supplementary material 4 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghannam, A., Jacques, A., de Ruffray, P. et al. NtRING1, putative RING-finger E3 ligase protein, is a positive regulator of the early stages of elicitin-induced HR in tobacco. Plant Cell Rep 35, 415–428 (2016). https://doi.org/10.1007/s00299-015-1893-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1893-7

Keywords

Navigation