Advertisement

Plant Cell Reports

, Volume 34, Issue 12, pp 2065–2080 | Cite as

The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty

  • Jesica Raineri
  • Karina F. Ribichich
  • Raquel L. ChanEmail author
Original Article

Abstract

Key message

Arabidopsis transgenic plants expressing the sunflower transcription factor HaWRKY76 exhibit increased yield and tolerance to drought and flood stresses. The genetic construct containing HaWRKY76 is proposed as a potential biotechnological tool to improve crops.

Abstract

Water deficit and water excess are abiotic stress factors that seriously affect crops worldwide. To increase the tolerance to such stresses without causing yield penalty constitutes a major goal for biotechnologists. In this survey, we report that HaWRKY76, a divergent sunflower WRKY transcription factor, is able to confer both dehydration and submergence tolerance to Arabidopsis transgenic plants without yield penalty. The expression pattern of HaWRKY76 was analyzed in plants grown in standard conditions and under different watering regimes indicating a regulation by water availability. The corresponding cDNA was isolated and cloned under the control of a constitutive promoter and Arabidopsis plants were transformed with this construct. These transgenic plants presented higher biomass, seed production and sucrose content than controls in standard growth conditions. Moreover, they exhibited tolerance to mild drought or flood (complete submergence/waterlogging) stresses as well as the same or increased yield, depending on the stress severity and plant developmental stage, compared with controls. Drought tolerance occurred via an ABA-independent mechanism and induction of stomatal closure. Submergence tolerance can be explained by the carbohydrate (sucrose and starch) preservation achieved through the repression of fermentation pathways. Higher cell membrane stability and chlorenchyma maintenance could be the nexus between tolerance responses in front of both stresses. Altogether, the obtained results indicated that HaWRKY76 can be a potential biotechnological tool to improve crops yield as well as drought and flood tolerances.

Keywords

Transcription factor WRKY Drought Submergence Sunflower Arabidopsis 

Notes

Acknowledgments

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT-PAE 37100 and PICT 2011 850), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 2011 11420100100278) and Universidad Nacional del Litoral (UNL, CAID 2011 50120110100399 and 50120110100349). KFR and RLC are members of CONICET and UNL; JR is a Fellow of CONICET and member of UNL. We thank Dr. Julieta Cabello and Dr. Gabriel Céccoli (IAL–CONICET UNL) for their valorous technical advice.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2015_1852_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 kb)
299_2015_1852_MOESM2_ESM.docx (374 kb)
Supplementary material 2 (DOCX 374 kb)
299_2015_1852_MOESM3_ESM.docx (594 kb)
Supplementary material 3 (DOCX 594 kb)
299_2015_1852_MOESM4_ESM.docx (647 kb)
Supplementary material 4 (DOCX 647 kb)
299_2015_1852_MOESM5_ESM.docx (137 kb)
Supplementary material 5 (DOCX 136 kb)
299_2015_1852_MOESM6_ESM.docx (166 kb)
Supplementary material 6 (DOCX 165 kb)
299_2015_1852_MOESM7_ESM.docx (281 kb)
Supplementary material 7 (DOCX 281 kb)
299_2015_1852_MOESM8_ESM.docx (16 kb)
Supplementary material 8 (DOCX 16 kb)

References

  1. Albacete AA, Martinez-Andujar C, Perez-Alfocea F (2014) Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 32:12–30CrossRefPubMedGoogle Scholar
  2. Arce AL, Raineri J, Capella M, Cabello JV, Chan RL (2011) Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity. BMC Plant Biol 11:42PubMedCentralCrossRefPubMedGoogle Scholar
  3. Armstrong W (1979) Aeration in higher plants. In: Woolhouse HWW (ed) Advances in botanical research, vol 7. Academic Press, USA, pp 225–332Google Scholar
  4. Bailey-Serres J, Voesenek L (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339CrossRefPubMedGoogle Scholar
  5. Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409CrossRefPubMedGoogle Scholar
  6. Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026–2028CrossRefPubMedGoogle Scholar
  7. Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138:447–462CrossRefPubMedGoogle Scholar
  8. Cabello JV, Chan RL (2012) The homologous homeodomain-leucine zipper transcription factors HaHB1 and AtHB13 confer tolerance to drought and salinity stresses via the induction of proteins that stabilize membranes. Plant Biotechnol J 10:815–825CrossRefPubMedGoogle Scholar
  9. Chan RL, Gonzalez DH, Dezar CA, Gago GM (2010) Transcription Factor Gene Induced By Water Deficit Conditions And Abscisic Acid From Helianthus Annuus, Promoter And Transgenic Plants. Patent WO2004/099365Google Scholar
  10. Chan RL, Cabello JV, Giacomelli JI (2013) HaHB11 provides improved plant yield and tolerance to abiotic stress. Patent WO2013116750 (A1)Google Scholar
  11. Chen Q, Liu Z, Wang B, Wang X, Lai J, Tian F (2015) Transcriptome sequencing reveals the roles of transcription factors in modulating genotype by nitrogen interaction in maize. Plant Cell Rep. doi: 10.1007/s00299-015-1822-9 PubMedCentralGoogle Scholar
  12. Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol 104:339–347PubMedCentralPubMedGoogle Scholar
  13. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  14. de Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R (1996) Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 111:381–391PubMedCentralCrossRefPubMedGoogle Scholar
  15. Ding ZJ, Yan JY, Xu XY, Yu DQ, Li GX, Zhang SQ, Zheng SJ (2014) Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. Plant J 79:13–27CrossRefPubMedGoogle Scholar
  16. Ellis MH, Dennis ES, Peacock WJ (1999) Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiol 119:57–64PubMedCentralCrossRefPubMedGoogle Scholar
  17. FAO (2012) Sunflower: a ray of hope for flood-affected farmers in Sindh. Accessed December 2014 http://www.fao.org/emergencies/fao-in-action/stories/stories-detail/en/c/152907/
  18. Fukao T, Xiong L (2013) Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? Curr Opin Plant Biol 16:196–204CrossRefPubMedGoogle Scholar
  19. Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427PubMedCentralCrossRefPubMedGoogle Scholar
  20. Giacomelli JI, Ribichich KF, Dezar CA, Chan RL (2010) Expression analyses indicate the involvement of sunflower WRKY transcription factors in stress responses, and phylogenetic reconstructions reveal the existence of a novel clade in the Asteraceae. Plant Sci 178:398–410CrossRefGoogle Scholar
  21. Giacomelli JI, Weigel D, Chan RL, Manavella PA (2012) Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195:766–773CrossRefPubMedGoogle Scholar
  22. Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415–418PubMedCentralCrossRefPubMedGoogle Scholar
  23. Gong X, Zhang J, Hu J, Wang W, Wu H, Zhang Q, Liu JH (2015) FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene. Plant Cell Environ. doi: 10.1111/pce.12539 Google Scholar
  24. Hattori Y, Nagai K, Ashikari M (2011) Rice growth adapting to deepwater. Curr Opin Plant Biol 14:100–105CrossRefPubMedGoogle Scholar
  25. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052CrossRefPubMedGoogle Scholar
  26. Ismond KP, Dolferus R, De Pauw M, Dennis ES, Good AG (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol 132:1292–1302PubMedCentralCrossRefPubMedGoogle Scholar
  27. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedCentralPubMedGoogle Scholar
  28. Johnson JR, Cobb BG, Drew MC (1994) Hypoxic Induction of Anoxia Tolerance in Roots of Adh1 Null Zea mays L. Plant Physiol 105:61–67PubMedCentralCrossRefPubMedGoogle Scholar
  29. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635PubMedCentralCrossRefPubMedGoogle Scholar
  30. Katinas L, Gutiérrez D, Grossi MA, Crisci JV (2007) Panorama de la familia Asteraceae (Compositae) en la Republica Argentina. Bol Soc Argent Bot 42:113–129Google Scholar
  31. Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832CrossRefGoogle Scholar
  32. Kim EY, Seo YS, Park KY, Kim SJ, Kim WT (2014) Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants. Gene 552:146–154CrossRefPubMedGoogle Scholar
  33. Koch KE, Ying Z, Wu Y, Avigne WT (2000) Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. J Exp Bot 51:417–427CrossRefPubMedGoogle Scholar
  34. Komatsu S, Deschamps T, Hiraga S, Kato M, Chiba M, Hashiguchi A, Tougou M, Shimamura S, Yasue H (2011) Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. Plant Mol Biol 77:309–322CrossRefPubMedGoogle Scholar
  35. Lakshmanan M, Zhang Z, Mohanty B, Kwon JY, Choi HY, Nam HJ, Kim DI, Lee DY (2013) Elucidating rice cell metabolism under flooding and drought stresses using flux-based modeling and analysis. Plant Physiol 162:2140–2150PubMedCentralCrossRefPubMedGoogle Scholar
  36. Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419–422CrossRefPubMedGoogle Scholar
  37. Liu H, Yang W, Liu D, Han Y, Zhang A, Li S (2011) Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep 38:417–427CrossRefPubMedGoogle Scholar
  38. Liu QL, Zhong M, Li S, Pan YZ, Jiang BB, Jia Y, Zhang HQ (2013) Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress. Plant Physiol Biochem 69:27–33CrossRefPubMedGoogle Scholar
  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  40. Loreti E, Poggi A, Novi G, Alpi A, Perata P (2005) A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol 137:1130–1138PubMedCentralCrossRefPubMedGoogle Scholar
  41. Luo X, Bai X, Sun X, Zhu D, Liu B, Ji W, Cai H, Cao L, Wu J, Hu M, Liu X, Tang L, Zhu Y (2013) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. J Exp Bot 64:2155–2169CrossRefPubMedGoogle Scholar
  42. Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 50:2146–2161CrossRefPubMedGoogle Scholar
  43. Manzur ME, Grimoldi AA, Insausti P, Striker GG (2009) Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence. Ann Bot 104:1163–1169PubMedCentralCrossRefPubMedGoogle Scholar
  44. Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M (2012) Mechanisms for coping with submergence and waterlogging in rice. Rice 5:1–14CrossRefGoogle Scholar
  45. O’Brien D, Belshe D, Meyer R, Falk J, Olson B (2009) High Plains Sunflower Production Handbook. K-State Research and Extension Publication, MF-2384Google Scholar
  46. Okay S, Derelli E, Unver T (2014) Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress. Mol Genet Genomics 289:765–781CrossRefPubMedGoogle Scholar
  47. Panero JL, Funk VA (2008) The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol Phylogenet Evol 47:757–782CrossRefPubMedGoogle Scholar
  48. Quartacci MF, Navari-Izzo F (1992) Water stress and free radical mediated changes in sunflower seedlings. J Plant Physiol 139:621–625CrossRefGoogle Scholar
  49. Raineri J, Wang S, Peleg Z, Blumwald E, Chan RL (2015) The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Mol Biol 88:401–413. doi: 10.1007/s11103-015-0329-7 CrossRefPubMedGoogle Scholar
  50. Rengel D, Arribat S, Maury P, Martin-Magniette ML, Hourlier T, Laporte M, Varès D, Carrère S, Grieu P, Balzergue S, Gouzy J, Vincourt P, Langlade NB (2012) A gene-phenotype network based on genetic variability for drought responses reveals key physiological processes in controlled and natural environments. PLoS One 7:e45249PubMedCentralCrossRefPubMedGoogle Scholar
  51. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636PubMedCentralCrossRefPubMedGoogle Scholar
  52. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258CrossRefPubMedGoogle Scholar
  53. Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10:2–11CrossRefPubMedGoogle Scholar
  54. Sachs MM, Freeling M, Okimoto R (1980) The anaerobic proteins of maize. Cell 20:761–767CrossRefPubMedGoogle Scholar
  55. Sasidharan R, Mustroph A, Boonman A, Akman M, Ammerlaan AM, Breit T, Schranz ME, Voesenek LA, van Tienderen PH (2013) Root transcript profiling of two Rorippa species reveals gene clusters associated with extreme submergence tolerance. Plant Physiol 163:1277–1292PubMedCentralCrossRefPubMedGoogle Scholar
  56. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  57. Setter TL, Bhekasut P, Greenway H (2010) Desiccation of leaves after de-submergence is one cause for intolerance to complete submergence of the rice cultivar IR 42. Funct Plant Biol 37:1096–1104CrossRefGoogle Scholar
  58. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223CrossRefPubMedGoogle Scholar
  59. Skirycz A, Vandenbroucke K, Clauw P, Maleux K, De Meyer B, Dhondt S, Pucci A, Gonzalez N, Hoeberichts F, Tognetti VB, Galbiati M, Tonelli C, Van Breusegem F, Vuylsteke M, Inzé D (2011) Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol 29:212–214CrossRefPubMedGoogle Scholar
  60. Sukumaran N, Weiser C (1972) Freezing injury in potato leaves. Plant Physiol 50:564–567PubMedCentralCrossRefPubMedGoogle Scholar
  61. Sun Y, Yu D (2015) Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. Plant Cell Rep 34:1295–1306 doi: 10.1007/s00299-015-1787-8 CrossRefPubMedGoogle Scholar
  62. Timme RE, Simpson BB, Randal Linder C (2007) High-resolution phylogeny for Helianthus (Asteraceae) using the 18S-26S ribosomal DNA external transcribed spacer. Am J Bot 94:1837–1852CrossRefPubMedGoogle Scholar
  63. Trinder P (1969) Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol 22:246PubMedCentralCrossRefPubMedGoogle Scholar
  64. Tripathi P, Rabara RC, Rushton PJ (2014) A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta 239:255–266CrossRefPubMedGoogle Scholar
  65. Vanderauwera S, Vandenbroucke K, Inzé A, van de Cotte B, Mühlenbock P, De Rycke R, Naouar N, Van Gaever T, Van Montagu MC, Van Breusegem F (2012) AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 109:20113–20118PubMedCentralCrossRefPubMedGoogle Scholar
  66. Voesenek LA, Bailey-Serres J (2013) Flooding tolerance: O2 sensing and survival strategies. Curr Opin Plant Biol 16:647–653CrossRefPubMedGoogle Scholar
  67. Xiong L, Ishitani M, Lee H, Zhu JK (1999) HOS5-a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana. Plant J 19:569–578CrossRefPubMedGoogle Scholar
  68. Yan H, Jia H, Chen X, Hao L, An H, Guo X (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55:2060–2076CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jesica Raineri
    • 1
  • Karina F. Ribichich
    • 1
  • Raquel L. Chan
    • 1
    Email author
  1. 1.Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del Litoral, Centro Científico Tecnológico CONICET Santa FeSanta FeArgentina

Personalised recommendations