Skip to main content
Log in

Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene from Gossypium hirsutum enhances Arabidopsis resistance to Verticillium wilt

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Expression of DHS1 in cotton is induced upon infection by Verticillium dahliae , and overexpression of GhDHS1 endows transgenic Arabidopsis plants excellent Verticillium resistance.

Abstract

Verticillium wilt is caused by a soil-borne fungus Verticillium dahliae. Resistance in most cotton cultivars is either scarce or unavailable, making Verticillium wilt a major obstacle in cotton production. Here, we identified a 3-deoxy-7-phosphoheptulonate synthase (DHS, EC 4.1.2.15) gene from Gossypium hirsutum, named GhDHS1. Its 1620 bp open reading frame encodes a putative 59.4 kDa protein. Phylogenetic analysis indicated that GhDHS1 is clustered in a clade with potato and tomato DHSs that can be induced by wounding and elicitors, respectively. Expression analysis demonstrated that GhDHS1 is constitutively expressed in cotton roots and stems, but transcripts are rare or non-existent in the leaves. Subcellular localization showed that GhDHS1 occurs in the plastids. When plants of three cultivars were inoculated with V. dahliae, DHS1 expression was more significantly up-regulated in the roots of resistant G. barbadense cv. Pima90-53 and G. hirsutum cv. Jimian20 than in the susceptible G. hirsutum cv. Han208. This suggested that DHS1 is involved in the cotton resistance to Verticillium wilt. Furthermore, GhDHS1 overexpressing transgenic lines of Arabidopsis were developed via Agrobacterium tumefaciens-mediated transformation. Compared with the untransformed WT (wild type), these transgenic plants showed excellent Verticillium wilt resistance with a significantly lower disease index. The overexpressing transgenic lines also had significantly longer primary roots and greatly increased xylem areas under V. dahliae infection. Overall, our results indicate that GhDHS1 performs a role in the cotton resistance to V. dahliae and would be potential to breeding cottons of Verticillium wilt resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DHS/DAHPS:

3-Deoxy-7-phosphoheptulonate synthase

Dpi:

Days post-inoculation

DI:

Disease index

EST:

Expressed sequence tag

GFP:

Green fluoresce protein

Hpi:

Hours post-inoculation

ORF:

Open reading frame

RT-qPCR:

Real-time quantitative polymerase chain reaction

SSH:

Suppression subtractive hybridization

WT:

Wild type

References

  • Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49

    Article  PubMed Central  PubMed  Google Scholar 

  • Bentley R (1990) The shikimate pathway—a metabolic tree with many branches. Crit Rev Biochem Mol Biol 25:307–384

    Article  CAS  PubMed  Google Scholar 

  • Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  CAS  PubMed  Google Scholar 

  • Cai YF, He XH, Mo JC, Sun Q, Yang JP, Liu JG (2009) Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr J Biotechnol 8:7363–7372

    CAS  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16:664–668 670

    CAS  PubMed  Google Scholar 

  • Chen P, Lee B, Robb J (2004) Tolerance to a non-host isolate of Verticillium dahliae in tomato. Physiol Mol Plant Pathol 64:283–291

    Article  CAS  Google Scholar 

  • Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Van Deynze A, Zhu Y, Yu S, Abdurakhmonov I, Katageri I, Kumar PA, Mehboob Ur R, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Dyer WE, Henstrand JM, Handa AK, Herrmann KM (1989) Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proc Natl Acad Sci USA 86:7370–7373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dyer WE, Weaver LM, Zhao JM, Kuhn DN, Weller SC, Herrmann KM (1990) A cDNA encoding 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from Solanum tuberosum L. J Biol Chem 265:1608–1614

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits in phylogenies: an apapproach using the bootstrap. Evolutio 39:783–791

    Article  Google Scholar 

  • Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  CAS  PubMed  Google Scholar 

  • Gao XQ, Wheeler T, Li ZH, Kenerley CM, He P, Shan LB (2011) Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J 66:293–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gayoso C, Pomar F, Novo-Uzal E, Merino F, Martínez de Ilárduya Ó (2010) The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol 10:1–19

    Article  Google Scholar 

  • Gorlach J, Beck A, Henstrand JM, Handa AK, Herrmann KM, Schmid J, Amrhein N (1993) Differential expression of tomato (Lycopersicon esculentum L.) genes encoding shikimate pathway isoenzymes. I. 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase. Plant Mol Biol 23:697–706

    Article  CAS  PubMed  Google Scholar 

  • Gorlach J, Raesecke HR, Rentsch D, Regenass M, Roy P, Zala M, Keel C, Boller T, Amrhein N, Schmid J (1995) Temporally distinct accumulation of transcripts encoding enzymes of the prechorismate pathway in elicitor-treated, cultured tomato cells. Proc Natl Acad Sci USA 92:3166–3170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haffner E, Karlovsky P, Diederichsen E (2010) Genetic and environmental control of the Verticillium syndrome in Arabidopsis thaliana. BMC Plant Biol 10:235

    Article  PubMed Central  PubMed  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA 103:230–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci 14:373–382

    Article  CAS  PubMed  Google Scholar 

  • Keith B, Dong XN, Ausubel FM, Fink GR (1991) Differential induction of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack. Proc Natl Acad Sci USA 88:8821–8825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62

    Article  CAS  PubMed  Google Scholar 

  • Konig S, Feussner K, Kaever A, Landesfeind M, Thurow C, Karlovsky P, Gatz C, Polle A, Feussner I (2014) Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytol 202:823–837

    Article  PubMed  Google Scholar 

  • Li C, He X, Luo XY, Xu L, Liu LL, Min L, Jin L, Zhu LF, Zhang XL (2014) Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression. Plant Physiol 166:2179–2194

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105

    Article  CAS  PubMed  Google Scholar 

  • Moura JCMS, Bonine CAV, De Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Muday GK, Herrmann KM (1992) Wounding induces one of two isoenzymes of 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase in Solanum tuberosum L. Plant Physiol 98:496–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pomar F, Merino F, Barcelo AR (2002) O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma 220:17–28

    Article  CAS  PubMed  Google Scholar 

  • Pomar F, Novo M, Bernal MA, Merino F, Barceló AR (2004) Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytol 163:111–123

    Article  CAS  Google Scholar 

  • Poulin J (2011) The role of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 1 in Arabidopsis thaliana metabolism. Dissertation, University of Toronto

  • Sato K, Mase K, Nakano Y, Nishikubo N, Sugita R, Tsuboi Y, Kajita S, Zhou J, Kitano H, Katayama Y (2006) 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase is regulated for the accumulation of polysaccharide-linked hydroxycinnamoyl esters in rice (Oryza sativa L.) internode cell walls. Plant Cell Rep 25:676–688

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Kumar V, Mohapatra T, Khandelwal V, Vyas G (2012) A simple and non-destructive method of direct-PCR for plant systems. J Plant Biol 55:114–122

    Article  CAS  Google Scholar 

  • Shi HY, Liu ZH, Zhu L, Zhang CJ, Chen Y, Zhou Y, Li FG, Li XB (2012) Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochim Biophys Sin (Shanghai) 44:555–564

    Article  CAS  Google Scholar 

  • Smit F, Dubery IA (1997) Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry 44:811–815

    Article  CAS  Google Scholar 

  • Sun Q, Jiang HZ, Zhu XY, Wang WN, He XH, Shi YZ, Yuan YL, Du XM, Cai YF (2013) Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing. BMC Genomics 14:852

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veronese P, Narasimhan ML, Stevenson RA, Zhu JK, Weller SC, Subbarao KV, Bressan RA (2003) Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant J 35:574–587

    Article  CAS  PubMed  Google Scholar 

  • Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, Yue Z, Cong L, Shang HH, Zhu SL, Zou CS, Li Q, Yuan YL, Lu CR, Wei HL, Gou CY, Zheng ZQ, Yin Y, Zhang XY, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu J, Woodard RW (2006) New insights into the evolutionary links relating to the 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase subfamilies. J Biol Chem 281:4042–4048

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zhu LF, Tu LL, Liu LL, Yuan DJ, Jin L, Long L, Zhang XL (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62:5607–5621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang CL, Liang S, Wang HY, Han LB, Wang FX, Cheng HQ, Wu XM, Qu ZL, Wu JH, Xia GX (2015) Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae. Mol Plant 8:399–411

    Article  CAS  PubMed  Google Scholar 

  • Zhang CY, Wang XF, Zhang GY, Wu LQ, Chi JN, Li ZK, Ma ZY (2010) ESTs analysis of suppression subtractive hybridization library from upland cotton resistant cultivar infected by Verticillium dahliae. Cotton Sci 22:17–22

    CAS  Google Scholar 

  • Zhang Y, Wang XF, Yang S, Chi JN, Zhang GY, Ma ZY (2011) Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Rep 30:2085–2096

    Article  CAS  PubMed  Google Scholar 

  • Zhang BL, Yang YW, Chen TZ, Yu WG, Liu TT, Li HJ, Fan XH, Ren YZ, Shen DY, Liu L, Dou DL, Chang YH (2012) Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS One 7:e51091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Wang XF, Ding ZG, Ma Q, Zhang GR, Zhang SL, Li ZK, Wu LQ, Zhang GY, Ma ZY (2013) Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genomics 14:637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang JF, Fang H, Zhou HP, Sanogo S, Ma ZY (2014) Genetics, breeding, and marker-assisted selection for Verticillium Wilt resistance in cotton. Crop Sci 54:1289–1303

    Article  Google Scholar 

  • Zhao J, Herrmann KM (1992) Cloning and sequencing of a second cDNA encoding 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase from Solanum tuberosum L. Plant Physiol 100:1075–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong R, Morrison WH III, Himmelsbach DS, Poole FL II, Ye ZH (2000) Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124:563–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was received from the National Natural Science Foundation of China (No. 31171597) and the 863 Project of China (No. 2013AA102601-5).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Ma.

Additional information

Communicated by J. S. Shin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Ji, L., Wang, X. et al. Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene from Gossypium hirsutum enhances Arabidopsis resistance to Verticillium wilt. Plant Cell Rep 34, 1429–1441 (2015). https://doi.org/10.1007/s00299-015-1798-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1798-5

Keywords

Navigation