Plant Cell Reports

, Volume 34, Issue 6, pp 1049–1061

Transformation of rice with large maize genomic DNA fragments containing high content repetitive sequences

  • Yafei Wang
  • Haiyang Zeng
  • Xu Zhou
  • Fei Huang
  • Wei Peng
  • Lin Liu
  • Wentao Xiong
  • Xue Shi
  • Meizhong Luo
Original Paper

Abstract

Key message

Large and complex maize BIBAC inserts, even with a length of about 164 kb and repeat sequences of 88.1 %, were transferred into rice.

Abstract

The BIBAC vector has been established to clone large DNA fragments and directly transfer them into plants. Previously, we have constructed a maize B73 BIBAC library and demonstrated that the BIBAC clones were stable in Agrobacterium. In this study, we demonstrated that the maize BIBAC clones could be used for rice genetic transformation through Agrobacterium-mediated method, although the average transformation efficiency for the BIBAC clones (0.86 %) is much lower than that for generally used binary vectors containing small DNA fragments (15.24 %). The 164-kb B73 genomic DNA insert of the BIBAC clone B2-6 containing five maize gene models and 88.1 % of repetitive sequences was transferred into rice. In 18.75 % (3/16) of the T1, 13.79 % (4/29) of the T2, and 5.26 % (1/19) of the T3 generation transgenic rice plants positive for the GUS and HYG marker genes, all the five maize genes can be detected. To our knowledge, this is the largest and highest content of repeat sequence-containing DNA fragment that was successfully transferred into plants. Gene expression analysis (RT-PCR) showed that the expression of three out of five genes could be detected in the leaves of the transgenic rice plants. Our study showed a potential to massively use maize genome resource for rice breeding by mass transformation of rice with large maize genomic DNA fragment BIBAC clones.

Keywords

BIBAC Large DNA fragment Genetic transformation Agrobacterium Rice Maize 

Abbreviations

BAC

Bacterial artificial chromosome

BIBAC

Binary BAC

BLAST

Basic local alignments search tool

TAC

Transformation-competent artificial chromosome

PFGE

Pulsed-field gel electrophoresis

References

  1. Andorf CM, Lawrence CJ, Harper LC, Schaeffer ML, Campbell DA, Sen TZ (2010) The Locus Lookup tool at MaizeGDB: identification of genomic regions in maize by integrating sequence information with physical and genetic maps. Bioinformatics 26:434–436. doi:10.1093/bioinformatics/btp556 CrossRefPubMedGoogle Scholar
  2. Aufsatz W, Mette MF, van der Winden J, Matzke M, Matzke AJ (2002) HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO J 21:6832–6841CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bennetzen JL, Hake S (2009) Handbook of maize: genetics and genomics. Springer, New YorkCrossRefGoogle Scholar
  4. Chang YL, Henriquez X, Preuss D, Copenhaver GP, Zhang HB (2003) A plant-transformation-competent BIBAC library from the Arabidopsis thaliana Landsberg ecotype for functional and comparative genomics. Theor Appl Genet 106:269–276. doi:10.1007/s00122-002-1074-2 PubMedGoogle Scholar
  5. Chang YL, Chuang HW, Meksem K, Wu FC, Chang CY, Zhang M, Zhang HB (2011) Characterization of a plant-transformation-ready large-insert BIBAC library of Arabidopsis and bombardment transformation of a large-insert BIBAC of the library into tobacco Genome. National Research Council Canada 54:437–447. doi:10.1139/g11-011 Google Scholar
  6. Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581CrossRefPubMedGoogle Scholar
  7. Cui Y, Bi YM, Brugiere N, Arnoldo M, Rothstein SJ (2000) The S locus glycoprotein and the S receptor kinase are sufficient for self-pollen rejection in Brassica. Proc Natl Acad Sci USA 97:3713–3717. doi:10.1073/pnas.050480297 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Dafny-Yelin M, Levy A, Tzfira T (2008) The ongoing saga of Agrobacterium–host interactions. Trends Plant Sci 13:102–105. doi:10.1016/j.tplants.2008.01.001 CrossRefPubMedGoogle Scholar
  9. Ercolano MR, Ballvora A, Paal J, Steinbiss HH, Salamini F, Gebhardt C (2004) Functional complementation analysis in potato via biolistic transformation with BAC large DNA fragments. Mol Breed 13:15–22. doi:10.1023/B:Molb0000012326.01128.5d CrossRefGoogle Scholar
  10. Feng J, Vick BA, Lee MK, Zhang HB, Jan CC (2006) Construction of BAC and BIBAC libraries from sunflower and identification of linkage group-specific clones by overgo hybridization. Theor Appl Genet 113:23–32. doi:10.1007/s00122-006-0265-7 CrossRefPubMedGoogle Scholar
  11. Frary A, Hamilton CM (2001) Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res 10:121–132CrossRefPubMedGoogle Scholar
  12. Halpin C (2005) Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155. doi:10.1111/j.1467-7652.2004.00113.x CrossRefPubMedGoogle Scholar
  13. Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116CrossRefPubMedGoogle Scholar
  14. Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93:9975–9979CrossRefPubMedCentralPubMedGoogle Scholar
  15. Harper LC, Schaeffer ML, Thistle J, Gardiner JM, Andorf CM, Campbell DA, Cannon EK, Braun BL, Birkett SM, Lawrence CJ, Sen TZ (2011) The MaizeGDB Genome Browser tutorial: one example of database outreach to biologists via video database. J Biol Databases Curation 2011:bar016. doi:10.1093/database/bar016 Google Scholar
  16. He RF, Pan J, Zhu LL, He GC (2010) Agrobacterium-mediated transformation of large DNA fragments using a BIBAC vector system in rice. Plant Mol Biol Rep 28:613–619. doi:10.1007/s11105-010-0195-z CrossRefGoogle Scholar
  17. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282CrossRefPubMedGoogle Scholar
  18. Lawrence CJ (2007) MaizeGDB. Methods Mol Biol 406:331–345PubMedGoogle Scholar
  19. Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V (2004) MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res 32:D393–D397. doi:10.1093/nar/gkh011 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Lawrence CJ, Harper LC, Schaeffer ML, Sen TZ, Seigfried TE, Campbell DA (2008) MaizeGDB: the maize model organism database for basic, translational, and applied research. Int J Plant Genomics 2008:496957. doi:10.1155/2008/496957 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Lee MK, Zhang Y, Zhang M, Goebel M, Kim HJ, Triplett BA, Stelly DM, Zhang HB (2013) Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.). BMC Genom 14:208. doi:10.1186/1471-2164-14-208 CrossRefGoogle Scholar
  22. Li Y, Uhm T, Ren C, Wu C, Santos TS, Lee MK, Yan B, Santos F, Zhang A, Scheuring C, Sanchez A, Millena AC, Nguyen HT, Kou H, Liu D, Zhang HB (2007) A plant-transformation-competent BIBAC/BAC-based map of rice for functional analysis and genetic engineering of its genomic sequence. Genome National Research Council Canada 50:278–288. doi:10.1139/g07-006 Google Scholar
  23. Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110:492–510. doi:10.1007/s00122-004-1857-8 CrossRefPubMedGoogle Scholar
  24. Lin YJ, Zhang QF (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23:540–547. doi:10.1007/s00299-004-0843-6 CrossRefPubMedGoogle Scholar
  25. Lin HY, Xia P, Wing RA, Zhang QF, Luo MZ (2012) Dynamic intra-japonica subspecies variation and resource application. Mol Plant 5:218–230. doi:10.1093/Mp/Ssr085 CrossRefPubMedGoogle Scholar
  26. Liu YG, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96:6535–6540CrossRefPubMedCentralPubMedGoogle Scholar
  27. Liu YG, Nagaki K, Fujita M, Kawaura K, Uozumi M, Ogihara Y (2000) Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation-competent artificial chromosome (TAC) vector. Plant J 23:687–695CrossRefPubMedGoogle Scholar
  28. Liu YG, Liu H, Chen L, Qiu W, Zhang Q, Wu H, Yang C, Su J, Wang Z, Tian D, Mei M (2002) Development of new transformation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning. Gene 282:247–255CrossRefPubMedGoogle Scholar
  29. Luo M, Wing RA (2003) An improved method for plant BAC library construction. Methods Mol Biol 236:3–20. doi:10.1385/1-59259-413-1:3 PubMedGoogle Scholar
  30. Magori S, Citovsky V (2011) Epigenetic control of Agrobacterium T-DNA integration. Biochim Biophys Acta 1809:388–394CrossRefPubMedCentralPubMedGoogle Scholar
  31. Matsuoka M, Kyozuka J, Shimamoto K, Kano-Murakami Y (1994) The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). The Plant journal : for cell and molecular biology 6:311–319CrossRefGoogle Scholar
  32. Murfett J, Wang XJ, Hagen G, Guilfoyle TJ (2001) Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell 13:1047–1061CrossRefPubMedCentralPubMedGoogle Scholar
  33. Ortiz-Vazquez E, Kaemmer D, Zhang HB, Muth J, Rodriguez-Mendiola M, Arias-Castro C, James A (2005a) Construction and characterization of a plant transformation-competent BIBAC library of the black Sigatoka-resistant banana Musa acuminata cv. Tuu Gia (AA). Theor Appl Genet 110:706–713. doi:10.1007/s00122-004-1896-1 CrossRefPubMedGoogle Scholar
  34. Ortiz-Vazquez E, Kaemmer D, Zhang HB, Muth J, Rodriguez-Mendiola M, Arias-Castro C, James A (2005b) Construction and characterization of a plant transformation-competent BIBAC library of the black Sigatoka-resistant banana Musa acuminata cv. Tuu Gia (AA). Theor Appl Genet 110:706–713. doi:10.1007/s00122-004-1896-1 CrossRefPubMedGoogle Scholar
  35. Pitzschke A, Hirt H (2010) New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 29:1021–1032. doi:10.1038/emboj.2010.8 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Qu S, Coaker G, Francis D, Zhou B, Wang GL (2003) Development of a new transformation-competent artificial chromosome (TAC) vector and construction of tomato and rice TAC libraries. Mol Breed 12:297–308. doi:10.1023/B:Molb0000006813.5377864 CrossRefGoogle Scholar
  37. Schaeffer ML, Harper LC, Gardiner JM, Andorf CM, Campbell DA, Cannon EK, Sen TZ, Lawrence CJ (2011) MaizeGDB: curation and outreach go hand-in-hand Database. J Biol Databases Curation 2011:bar022. doi:10.1093/database/bar022 Google Scholar
  38. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han YJ, Lee H, Li PH, Lisch DR, Liu SZ, Liu ZJ, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu Q, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson, RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi:10.1126/science.1178534
  39. Sen TZ, Andorf CM, Schaeffer ML, Harper LC, Sparks ME, Duvick J, Brendel VP, Cannon E, Campbell DA, Lawrence CJ (2009) MaizeGDB becomes ‘sequence-centric’ database. J Biol Databases Curation. 2009:bap020. doi:10.1093/database/bap020 Google Scholar
  40. Shi X, Zeng H, Xue Y, Luo M (2011) A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange. Plant Methods 7:33. doi:10.1186/1746-4811-7-33 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5:354–357CrossRefPubMedGoogle Scholar
  42. Song J, Bradeen JM, Naess SK, Helgeson JP, Jiang J (2003) BIBAC and TAC clones containing potato genomic DNA fragments larger than 100 kb are not stable in Agrobacterium. Theor Appl Genet 107:958–964. doi:10.1007/s00122-003-1334-9 CrossRefPubMedGoogle Scholar
  43. Song R, Segal G, Messing J (2004) Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic Acids Res 32:e189. doi:10.1093/nar/gnh183 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Stam M, Belele C, Dorweiler JE, Chandler VL (2002) Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev 16:1906–1918. doi:10.1101/gad.1006702 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Tao Q, Wang A, Zhang HB (2002) One large-insert plant-transformation-competent BIBAC library and three BAC libraries of Japonica rice for genome research in rice and other grasses. Theor Appl Genet 105:1058–1066. doi:10.1007/s00122-002-1057-3 CrossRefPubMedGoogle Scholar
  46. Toki S, Takamatsu S, Nojiri C, Ooba S, Anzai H, Iwata M, Christensen AH, Quail PH, Uchimiya H (1992) Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol 100:1503–1507CrossRefPubMedCentralPubMedGoogle Scholar
  47. Vega JM, Yu W, Han F, Kato A, Peters EM, Zhang ZJ, Birchler JA (2008) Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Mol Biol 66:587–598. doi:10.1007/s11103-007-9276-2 CrossRefPubMedGoogle Scholar
  48. Walbot V (2009) 10 reasons to be tantalized by the B73 maize genome. PLoS Genet. doi:10.1371/journalpgen1000723 Google Scholar
  49. Wang WQ, Wu YR, Li Y, Xie JY, Zhang ZH, Deng ZY, Zhang YY, Yang CP, Lai JB, Zhang HW, Bao HY, Tang SY, Yang CW, Gao P, Xia GX, Guo HS, Xie Q (2010) A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. Plant Mol Biol 72:91–99. doi:10.1007/s1110300995533 CrossRefPubMedGoogle Scholar
  50. Wang C, Shi X, Liu L, Li H, Ammiraju JS, Kudrna DA, Xiong W, Wang H, Dai Z, Zheng Y, Lai J, Jin W, Messing J, Bennetzen JL, Wing RA, Luo M (2013) Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives. Genetics 195:723–737. doi:10.1534/genetics.113.157115 CrossRefPubMedCentralPubMedGoogle Scholar
  51. Wang Y, Peng W, Zhou X, Huang F, Shao L, Luo M (2014) The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus. New Phytol. doi:10.1111/nph.12866 Google Scholar
  52. Xing YZ, Zhang QF (2010) Genetic and Molecular Bases of Rice Yield. Annu Rev Plant Biol 61:421–442. doi:10.1146/annurevarplant042809112209 CrossRefPubMedGoogle Scholar
  53. Xu YY, Zhou YL, Song LL, Zhang Y, Zhao ML (2008) Construction and characterization of the transformation-competent artificial chromosome (TAC) libraries of Leymus multicaulis. Sci China Ser C 51:604–613. doi:10.1007/s1142700800798 CrossRefGoogle Scholar
  54. Zhai JF, Wang Y, Sun CY, Jiang SC, Wang KY, Zhang Y, Zhang HB, Zhang MP (2013) A plant-transformation-competent BIBAC library of ginseng (Panax ginseng C. A. Meyer) for functional genomics research and characterization of genes involved in ginsenoside biosynthesis. Mol Breeding 31:685–692. doi:10.1007/s11032-012-9826-4 CrossRefGoogle Scholar
  55. Zhang H, Phan BH, Wang K, Artelt BJ, Jiang J, Parrott WA, Dawe RK (2012) Stable integration of an engineered megabase repeat array into the maize genome. Plant J 70:357–365. doi:10.1111/j.1365-313X.2011.04867.x CrossRefPubMedGoogle Scholar
  56. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102:15383–15388. doi:10.1073/pnas0503023102 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yafei Wang
    • 1
  • Haiyang Zeng
    • 1
  • Xu Zhou
    • 1
  • Fei Huang
    • 1
  • Wei Peng
    • 1
  • Lin Liu
    • 1
  • Wentao Xiong
    • 1
  • Xue Shi
    • 1
  • Meizhong Luo
    • 1
  1. 1.National Key Laboratory of Crop Genetic Improvement and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina

Personalised recommendations