Plant Cell Reports

, Volume 34, Issue 5, pp 671–704 | Cite as

Dendrobium micropropagation: a review

  • Jaime A. Teixeira da SilvaEmail author
  • Jean Carlos CardosoEmail author
  • Judit DobránszkiEmail author
  • Songjun ZengEmail author


Dendrobium is one of the largest and most important (ornamentally and medicinally) orchid genera. Tissue culture is now an established method for the effective propagation of members of this genus. This review provides a detailed overview of the Dendrobium micropropagation literature. Through a chronological analysis, aspects such as explant, basal medium, plant growth regulators, culture conditions and final organogenic outcome are chronicled in detail. This review will allow Dendrobium specialists to use the information that has been documented to establish, more efficiently, protocols for their own germplasm and to improve in vitro culture conditions based on the optimized parameters detailed in this review. Not only will this expand the use for mass propagation, but will also allow for the conservation of important germplasm. Information on the in vitro responses of Dendrobium for developing efficient protocols for breeding techniques based on tissue culture, such as polyploidization, somatic hybridization, isolation of mutants and somaclonal variants and for synthetic seed and bioreactor technology, or for genetic transformation, is discussed in this review. This is the first such review on this genus and represents half a decade of literature dedicated to Dendrobium micropropagation.


In vitro Micropropagation Orchidaceae Somatic embryogenesis Tissue culture 


Conflict of interest

The authors declare no conflicts of interest.


  1. Aktar S, Nasiruddin KM, Hossain K (2008) Effects of different media and organic additives interaction on in vitro regeneration of Dendrobium orchid. J Agric Rural Dev 6:69–74Google Scholar
  2. Antony JJJ, Mubbarakh SA, Mahmood M, Subramaniam S (2014) Effect of plasmolysis on protocorm-like bodies of Dendrobium Bobby Messina orchid following cryopreservation with encapsulation–dehydration method. Appl Biochem Biotechnol 172:1433–1444PubMedGoogle Scholar
  3. Arditti J (1979) Origin of protocorm. Am Orchid Soc Bull 48:228Google Scholar
  4. Asghar S, Ahmad T, Hafiz IA, Yaseen M (2011) In vitro propagation of orchid (Dendrobium nobile) var. Emma White. Afr J Biotechnol 10(16):3097–3103Google Scholar
  5. Atichart P, Bunnag S (2007) Polyploid induction in Dendrobium secundum (Bl.) Lindl. by in vitro techniques. Thai J Agric Sci 40(1–2):91–95Google Scholar
  6. Bai MF, Wu TL, Huang M, Zhang TG (2004) Rapid propagation of Dendrobium loddigesii Rolfe by tissue culture. Seed 23:44–46 (in Chinese with English abstract)Google Scholar
  7. Bai Y, Bao YH, Wang WQ, Yan YN (2006) Tissue culture and rapid propagation of Dendrobium crepidatum Lindl. ex Paxt. Plant Physiol Commun 42:R28–S68 (in Chinese)Google Scholar
  8. Bairu MW, Aremu AO, van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173Google Scholar
  9. Bhadra SK, Barua AK, Bhattacharjee B, Hossain MM (2002) In vitro micropropagation of Dendrobium aphyllum (Roxb.) G. E. C. Fisher. Bangladesh J Genet Biotechnol 3:47–50Google Scholar
  10. Bustam S, Sinniah UR, Kadir MA, Zaman FQ, Subramaniam S (2013) Selection of optimal stage for protocorm-like bodies and production of artificial seeds for direct regeneration on different media and short term storage of Dendrobium Shavin White. Plant Growth Regul 69:215–224Google Scholar
  11. Chaicharoen S, Saejew K (1981) Autopolyploidy in Dendrobium phalaenopsis. J Sci Soc Thailand 7:25–32Google Scholar
  12. Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659Google Scholar
  13. Chugh S, Guha S, Rao IU (2009) Micropropagation of orchids: a review on the potential of different explants. Sci Hort 122:507–520Google Scholar
  14. Chung HH, Chen JT, Chang WC (2005) Cytokinins induce direct somatic embryogenesis of Dendrobium ‘Chiengmai Pink’ and subsequent plant regeneration. In Vitro Cell Dev Biol Plant 41:765–769Google Scholar
  15. Chung HH, Chen JT, Chang WC (2007) Plant regeneration through direct somatic embryogenesis from leaf explants of Dendrobium. Biol Plant 51:346–350Google Scholar
  16. Cui HY, Murthy HN, Moh SH, Cui YY, Lee EJ, Paek KY (2014) Production of biomass and bioactive compounds in protocorm cultures of Dendrobium candidum Wall ex Lindl. using balloon type bubble bioreactors. Ind Crops Prod 53:28–33Google Scholar
  17. Das MC, Kumaria S, Tandon P (2008) In vitro propagation and conservation of Dendrobium lituiflorum Lindl. through protocorm-like bodies. J Plant Biochem Biotechnol 17:177–180Google Scholar
  18. David R, Băla M (2013) In vitro plant growth and rooting of Dendrobium nobile using different growth hormones concentration. J Hortic For Biotechnol 17(4):32–35Google Scholar
  19. Dohling S, Kumaria S, Tandon P (2012) Multiple shoot induction from axillary bud cultures of the medicinal orchid. Dendrobium longicornu. AoB Plants 2012:pls032Google Scholar
  20. Ferreira WM, Kerbauy GB, Kraus JE, Pescador R, Suzuki RM (2006a) Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobium. J Plant Physiol 163:1126–1134Google Scholar
  21. Ferreira WM, Kerbauy GB, Costa APP (2006b) Micropropagation and genetic stability of a Dendrobium hybrid (Orchidaceae). In Vitro Cell Dev Biol Plant 42:568–571Google Scholar
  22. Ferreira WM, Suzuki RM, Pescador R, Figueiredo-Ribeiro RCL, Kerbauy GB (2011) Propagation, growth, and carbohydrates of Dendrobium Second Love (Orchidaceae) in vitro as affected by sucrose, light, and dark. In Vitro Cell Dev Biol Plant 47:420–427Google Scholar
  23. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50(1):151–158PubMedGoogle Scholar
  24. Gantait S, Mandal N, Das PK (2009) Impact of auxins and activated charcoal on in vitro rooting of Dendrobium chrysotoxum Lindl. cv. Golden Boy. J Trop Agric 47:84–86Google Scholar
  25. Gao PY, Chen JM, Gan Q (2002) Tissue culture of stem segment and plantlet regeneration of Dendrobium nobile. Chin Tradit Herbal Drug 33:1031–1033 (in Chinese with English abstract)Google Scholar
  26. George EF, Hall MA, Jan De Klerk G (2008) Plant propagation by tissue culture, 3rd edn. Springer, The NetherlandsGoogle Scholar
  27. Guan P, Shi JM (2009) Tissue culture of stem segment and induction of floral buds of Dendrobium denndanum. Lishizhen Med Materia Med Res 20:205–206 (in Chinese with English abstract)Google Scholar
  28. Hossain MM (2013) In vitro embryo morphogenesis and micropropagation of Dendrobium aggregatum Roxb. Plant Tissue Cult Biotechnol 23(2):241–249Google Scholar
  29. Hossain MM, Sharma M, Pathak P (2013) In vitro propagation of Dendrobium aphyllum (Orchidaceae)—seed germination to flowering. J Plant Biochem Biotechnol 22:157–167Google Scholar
  30. Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Shih HH, Chen WH, Tsai WC, Chen HH (2011) Research on orchid biology and biotechnology. Plant Cell Physiol 52:1467–1486PubMedGoogle Scholar
  31. Huang WC, Yin LQ, Hu YH, Wang XQ, Zhao XF, Li XF (2008) In vitro rapid propagation of Dendrobium fimbriatum. J Shanghai Jiaotong Univ (Agric Sci) 26:584–587 (in Chinese with English abstract)Google Scholar
  32. Jain R, Babbar SB (2006) Xanthan gum: an economical substitute of agar for in vitro multiplication of an orchid, Dendrobium chrysotoxum Lindl. Curr Sci 91:27–28Google Scholar
  33. Jaiphet C, Rangsayatorn N (2010) Micropropagation of a rare orchid Dendrobium gratiosissimum using thin cell layers. Acta Hortic (ISHS) 878:185–189Google Scholar
  34. Jiang ST, Wei M, Luo JP (2006) Effect of phosphate on cell growth and polysaccharide production by suspension cultures of protocorm-like bodies of Dendrobium huoshanense. Chin J Biotechnol 22:613–617 (in Chinese with English abstract)Google Scholar
  35. Jones WE, Kuehnle AR (1998) Ploidy identification using flow cytometry in tissues of Dendrobium species and cultivars. Lindleyana 13:11–18Google Scholar
  36. Julkiflee AL, Uddain J, Subramaniam S (2014) Efficient micropropagation of Dendrobium sonia-28 for rapid PLBs proliferation. Emir J Food Agric 26:545–551Google Scholar
  37. Kabir MF, Rahman MS, Jamal A, Rahman M, Khalekuzzaman M (2013) Multiple shoot regeneration in Dendrobium fimbriatum Hook an ornamental orchid. J Anim Plant Sci 23(4):1140–1145Google Scholar
  38. Kaewduangta W, Reamkatog P (2011) Effect of modification medium on growth development of Dendrobium parishii in vitro. Am Eurasian J Agric Environ Sci 11:117–121Google Scholar
  39. Kaewubon P, Hutadilok-Towatana N, Teixeira da Silva JA, Meesawat U (2014) Ultrastructural and biochemical alterations during browning of Pigeon orchid (Dendrobium crumenatum Swartz) callus. Plant Tissue Cult Biotechnol (in press)Google Scholar
  40. Kanchanapoom K, Jantaro S, Rakchad D (2001) Isolation and fusion of protoplasts from mesophyll cells of Dendrobium Pompadour. Sci Asia 27:29–34Google Scholar
  41. Kanjilal B, DeSarkar D, Mitra J, Dutta BK (1999) Stem disc culture: development of a rapid mass propagation method of Dendrobium moschatum (Buch-Ham) Swartz—an endangered orchid. Current Sci 77:497–500Google Scholar
  42. Kao KN, Michayluk MR (1975) Nutrient requirements for growth of Vicia hajastana cells and protoplasts at very low population density in liquid media. Planta 126:105–111PubMedGoogle Scholar
  43. Khentry Y, Paradornuvat A, Tantiwiwat S, Phansiri S, Thaveechai N (2006) Protoplast isolation and culture of Dendrobium Sonia “Bom 17”. Kasetsart J (Nat Sci) 40:361–369Google Scholar
  44. Khosravi AR, Kadir MA, Kazemin SB, Zaman FQ, De Silva AE (2008) Establishment of a plant regeneration system from callus of Dendrobium cv. Serdang Beauty. Afr J Biotechnol 7(22):4093–4099Google Scholar
  45. Kim KK, Kunisaki JT, Sagawa Y (1970) Shoot tip culture of Dendrobium. Am Orchid Soc Bull 39:1077–1080Google Scholar
  46. Knudson L (1921) La germinación simbiótica de las semillas de orquideas. Bol Real Soc Española Hist Nat 21:250–260Google Scholar
  47. Knudson K (1946) A new nutrient solution for germination of orchid seeds. Am Orchid Soc Bull 15:214–217Google Scholar
  48. Kong Q, Yuan SY, Végvári GY (2007) Micropropogation of an orchid Dendrobium strongylanthum Rchb.f. Int J Hortic Sci 13:61–64Google Scholar
  49. Kuehnle AR, Nan GL (1990) Factors influencing the isolation and culture of protoplasts from Hawaiian Dendrobium cultivars. In: Kernoban J, Bonham N, Bonham D, Cobb L (eds) Proceedings of the 13th World Orchid Conference, 1990. Auckland, New Zealand, pp 259–262Google Scholar
  50. Kukulczanka K, Wojciechowska U (1983) Propagation of two Dendrobium species by in vitro culture. Acta Hortic (ISHS) 131:105–110Google Scholar
  51. Kumari IP, George TS (2011) In vitro clonal shoot morphogenesis of commercial Dendrobium orchid cultivars in polyamines supplemented medium. J Tropic Agric 49:118–120Google Scholar
  52. Kumari IP, George TS, Rajmohan K (2013) Influence of plant growth regulators on in vitro clonal propagation of Dendrobium Sonia ‘Earsakul’. J Biol Innov 2(2):51–58Google Scholar
  53. Kunasakdakul K, Smitamana P (2003) Dendrobium Pratum Red protoplast. Thai J Agric Sci 36:1–8Google Scholar
  54. Li H, Zheng SX, Li ZL, Yu CX (2004) Preliminary study on polyploid of Dendrobium devonianum. Chin Agric Sci Bull 20:198–199 (in Chinese with English abstract)Google Scholar
  55. Li SL, Bai YB, Cao Y, Li ZS, Geng XY, Wang YQ, Wu R (2011) Study on rapid propagation of stem segments of Dendrobium devonianum. Subtropical Plant Sci 40:50–52 (in Chinese with English abstract)Google Scholar
  56. Li X, He T, Chun Z (2013a) Detecting genetic diversity of Dendrobium tissue culture seedlings with ISSR method. Chin J Appl Environ Biol 19:249–254 (in Chinese with English abstract)Google Scholar
  57. Li SL, Wang YQ, Cao Y, Bai YB (2013b) Study on callus induction of Dendrobium devonianum by stem segment and its plant regeneration. Trop Agric Sci Technol 36:28–46 (in Chinese with English abstract)Google Scholar
  58. Li Y, Zhu DH, Pan HT, Zhang QX (2013c) In vitro propagation of three Dendrobium species from stems. J Northeast Forest Univ 41(8):77–81 (in Chinese with English abstract)Google Scholar
  59. Lin Y, Li J, Li B, He T, Chun Z (2011) Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tissue Organ Cult 105:329–335Google Scholar
  60. Liu SQ, Li XJ, Yu QB, Zhou GY (2005) Study on hereditary stability for Dendrobium officinale et Migo of different descends. J South Yangtze Univ (Nat Sci Ed) 4(5):518–521 (in Chinese with English abstract)Google Scholar
  61. Luo JP, Wang Y, Zha XQ, Huang L (2008) Micropropagation of Dendrobium densiflorum Lindl. ex Wall. through protocorm-like bodies: effects of plant growth regulators and lanthanoids. Plant Cell Tissue Organ Cult 93:333–340Google Scholar
  62. Luo JP, Wawrosch C, Kopp B (2009) Enhanced micropropagation of Dendrobium huoshanense C.Z. Tang et S.J. Cheng through protocorm-like bodies: the effects of cytokinins, carbohydrate sources and cold pretreatment. Sci Hortic 123:258–262Google Scholar
  63. Malabadi RB, Mulgund GS, Kallappa N (2005) Micropropagation of Dendrobium nobile from shoot tip sections. J Plant Physiol 162:473–478PubMedGoogle Scholar
  64. Maridass M, Mahesh R, Raju G, Benniamin A, Muthuchelian K (2010) In vitro propagation of Dendrobium nanum through rhizome bud culture. Int J Biol Technol 1:50–54Google Scholar
  65. Martin KP, Madassery J (2006) Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants, and protocorm-like bodies. Sci Hortic 108:95–99Google Scholar
  66. Meesawat U, Kanchanapoom K (2002) In vitro plant regeneration through embryogenesis and organogenesis from callus culture of pigeon orchid (Dendrobium crumenatum Sw.). Thammasat Int J Sci Technol 7(2):9–17Google Scholar
  67. Mei TA, Danial M, Mahmood M, Subramaniam S (2012) Exquisite protocol of callus induction and protocorm-like bodies (PLBs) regeneration of Dendrobium Sonia-28. Aust J Crop Sci 6:793–800Google Scholar
  68. Miguel TP, Leonhardt KW (2011) In vitro polyploid induction of orchids using oryzalin. Sci Hortic 130:314–319Google Scholar
  69. Mitra GC, Prasad RN, Roychowdhary A (1976) Inorganic salts and differentiation of protocorms in seed-callus of an orchid and correlated changes in its free amino acid content. Ind J Exp Biol 14:350–351Google Scholar
  70. Mohanty P, Das MC, Kumaria S, Tandon P (2013) Cryopreservation of pharmaceutically important orchid Dendrobium chrysanthum Wall. ex Lindl. using vitrification based method. Acta Physiol Plant 35:1373–1379Google Scholar
  71. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  72. Nambiar N, Tee CS, Maziah M (2012) Effects of organic aditivies [sic] and different carbohydrate sources on proliferation of protocorm-like bodies in Dendrobium Alya Pink. Plant Omics J 5:10–18Google Scholar
  73. Nasiruddin KM, Begum R, Yasmin S (2003) Protocorm like bodies and plantlet regeneration from Dendrobium formosum leaf callus. Asian J Plant Sci 2:955–957Google Scholar
  74. Nayak NR, Sahoo S, Patnaik S, Rath SP (2002) Establishment of thin cross section (TCS) culture method for rapid micropropagation of Cymbidium aloifolium (L.) Sw. and Dendrobium nobile Lindl. (Orchidaceae). Sci Hortic 94:107–116Google Scholar
  75. Nge KL, New N, Chandrkrachang S, Stevens WF (2006) Chitosan as a growth stimulator in orchid tissue culture. Plant Sci 170:1185–1190Google Scholar
  76. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87PubMedGoogle Scholar
  77. Nogroho A (2006) Mikropropagasi Dendrobium “Emma Pink” (Orchidaceae) pada media kultur in vitro. Bioteknologi 3:27–33 (in Indonesian with English abstract)Google Scholar
  78. Obsuwan K, Sawangsri K, Thongpukdee A, Thepsithar C (2013) The response of growth and development from in vitro seed propagation of Dendrobium orchid to chitosan. Acta Hortic (ISHS) 970:173–176Google Scholar
  79. Pan J, Ao JC (2014) Tissue culture and rapid propagation of Dendrobium trigonopus. Subtropical Plant Sci 43(1):84–85 (Chinese with English abstract)Google Scholar
  80. Pant B, Thapa D (2012) In vitro mass propagation of an epiphytic orchid, Dendrobium primulinum Lindl. through shoot tip culture. Afr. J Biotech 11(42):9970–9974Google Scholar
  81. Paul S, Kumaria S, Tandon P (2012) An effective nutrient medium for asymbiotic seed germination and large-scale in vitro regeneration of Dendrobium hookerianum, a threatened orchid of northeast India. AoB Plants plr032Google Scholar
  82. Pornpienpakdee P, Singhasurasak R, Chaiyasap P, Pichyangkura R, Bunjongrat R, Chadchawan S, Limpanavech P (2010) Improving the micropropagation efficiency of hybrid Dendrobium orchids with chitosan. Sci Hortic 124:490–499Google Scholar
  83. Pradhan S, Paudel YP, Pant B (2013) Efficient regeneration of plants from shoot tip explants of Dendrobium densiflorum Lindl., a medicinal orchid. Afr J Biotechnol 12:1378–1383Google Scholar
  84. Puchooa D (2004) Comparison of different culture media for the in vitro culture of Dendrobium (Orchideaceae). Int J Agric Biol 6:884–888Google Scholar
  85. Pyati AN, Murthy HN, Hahn EJ, Paek KY (2002) In vitro propagation of Dendrobium macrostachym Lindl.—a threatened orchid. Indian J Exp Biol 40:620–623PubMedGoogle Scholar
  86. Rangsayatorn N (2009) Micropropagation of Dendrobium draconis Rchb. f. from thin cross-section culture. Sci Hortic 122:662–665Google Scholar
  87. Rao S, Barman B (2014) In vitro micropropagation of Dendrobium chrysanthum Wall. ex Lindl.—a threatened orchid. Sch Acad J Biosci 2(1):39–42Google Scholar
  88. Reinert A, Mohr HC (1967) Propagation of Cattleya by tissue culture of lateral bud meristem. Proc Amer Soc Hortic Sci 91:664–671Google Scholar
  89. Roy J, Banerjee N (2003) Induction of callus and plant regeneration from shoot-tip explant of Dendrobium fimbriatum Lindl. var. oculatum Hk. f. Sci Hortic 97:333–340Google Scholar
  90. Roy J, Naha S, Majumdar M, Banerjee N (2007) Direct and callus-mediated protocorm-like body induction from shoot-tips of Dendrobium chrysotoxum Lindl. (Orchidaceae). Plant Cell Tissue Organ Cult 90:31–39Google Scholar
  91. Sagawa Y, Shoji T (1967) Clonal propagation of Dendrobiums through shoot meristem culture. Am Orchid Soc Bull 36:856–859Google Scholar
  92. Saiprasad GVS, Raghuveer P, Khetarpal S, Chandra R (2004) Effect of various polyamines on production of protocorm-like bodies in orchid—Dendrobium ‘Sonia’. Sci Hortic 100:161–168Google Scholar
  93. Sanguthai O, Sanguthai S, Kamemoto H (1973) Chromosome doubling of a Dendrobium hybrid with colchicine in meristem culture. Hawaii Orchid J 2:12–16Google Scholar
  94. Seah KT (2009) Endopolyploidy in Dendrobium Chao Praya Smile and Anthurium andraeanum cv ‘Red Hot’. PhD thesis, National University of Singapore, SingaporeGoogle Scholar
  95. Sharma A, Tandon P (1992) In vitro culture of Dendrobium wardianum Warner: morphogenetic effects of some nitrogenous adjuvants. Indian J Plant Physiol 35(1):80–85Google Scholar
  96. Sharma U, Rao VR, Nohan JSS, Reddy AS (2007) In vitro propagation of Dendrobium microbulbon A. Rich—a rare ethnomedicinal herb. Indian J Biotech 6:381–384Google Scholar
  97. Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207PubMedGoogle Scholar
  98. Sharon M, Vasundhara G (1990) Micropropagation of Dendrobium Joannie Ostenhault. J Orchid Soc India 4:145–148Google Scholar
  99. Shiau YJ, Nalawade SM, Hsia CN, Mulabagal V, Tsay HS (2005) In vitro propagation of the Chinese medicinal plant, Dendrobium candidum Wall. ex Lindl., from axenic nodal segments. In Vitro Cell Dev Biol Plant 41:666–670Google Scholar
  100. Sim GE, Loh CS, Goh CJ (2007) High frequency early in vitro flowering of Dendrobium Madame Thong-In (Orchidaceae). Plant Cell Rep 26:383–393PubMedGoogle Scholar
  101. Song S, Xu Y, Wang BZ, Liu YD, Qin HY, Ma WH (2013) Different media on the tissue culture of Dendrobium officinale. Chin Agric Sci Bull 29(13):133–139 (in Chinese with English abstract)Google Scholar
  102. Su Z, Wang CB (2014) Tissue culture propagation techniques of Dendrobium dixanthum. For Inventory Planning 39(6):160-162 (Chinese with English abstract)Google Scholar
  103. Sujjaritthurakarn P, Kanchanapoom K (2011) Efficient direct protocorm-like bodies induction of dwarf Dendrobium using thidiazuron. Not Sci Biol 3:88–92Google Scholar
  104. Sunitibala H, Kishor R (2009) Micropropagation of Dendrobium transparens L. from axenic pseudobulb segments. Indian J Biotechnol 8:448–452Google Scholar
  105. Tee CS, Wong CQ, Lam XL, Maziah M (2010) A preliminary study of protocorm-like bodies (PLBs) induction using leaf explants of Vanda and Dendrobium orchids. Asia Pac J Mol Biol Biotechnol 18:189–191Google Scholar
  106. Tee CS, Maziah M, Tan CS, Abdullah MP (2011) Selection of co-transformed Dendrobium Sonia 17 using hygromycin and green fluorescent protein. Biol Plant 55:572–576Google Scholar
  107. Teixeira da Silva JA (2012a) Is BA (6-benzyladenine) BAP (6-benzylaminopurine)? Asian Austral J Plant Sci Biotechnol 6(special issue 1):121–124Google Scholar
  108. Teixeira da Silva JA (2012b) Callus, calluses or calli: multiple plurals? Asian Austral J Plant Sci Biotechnol 6(special issue 1):125–126Google Scholar
  109. Teixeira da Silva JA (2013a) The role of thin cell layers in regeneration and transformation in orchids. Plant Cell Tissue Organ Cult 113:149–161Google Scholar
  110. Teixeira da Silva JA (2013b) Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floricult Ornam Biotechnol 7:1–52Google Scholar
  111. Teixeira da Silva JA (2014) Should the term protocorm-like body be used exclusively for orchids? J Plant Dev 22:161–166Google Scholar
  112. Teixeira da Silva JA, Dobránszki J (2011) The plant growth correction factor. I. The hypothetical and philosophical basis. Int J Plant Dev Biol 5:73–74Google Scholar
  113. Teixeira da Silva JA, Dobránszki J (2013) Plant thin cell layers: a 40-year celebration. J Plant Growth Regul 32:922–943Google Scholar
  114. Teixeira da Silva JA, Dobránszki J (2014) Dissecting the concept of the thin cell layer: theoretical basis and practical application of the plant growth correction factor to apple, Cymbidium and chrysanthemum. J Plant Growth Regul 33:881–895Google Scholar
  115. Teixeira da Silva JA, Tanaka M (2006) Multiple regeneration pathways via thin cell layers in hybrid Cymbidium (Orchidaceae). J Plant Growth Regul 25:203–210Google Scholar
  116. Teixeira da Silva JA, Chin DP, Van PT, Mii M (2011) Transgenic orchids. Sci Hortic 130:673–680Google Scholar
  117. Teixeira da Silva JA, Aceto S, Liu W, Yu H, Kanno A (2014a) Genetic control of flower development, color and senescence of Dendrobium orchids. Sci Hortic 175:74–86Google Scholar
  118. Teixeira da Silva JA, Zeng SJ, Dobránszki J, Cardoso JC, Kerbauy GB (2014b) In vitro flowering of Dendrobium. Plant Cell Tissue Organ Cult 119(3):447–456Google Scholar
  119. Teixeira da Silva JA, Giang DTT, Dobránszki J, Zeng SJ, Tanaka M (2014b) Ploidy analysis of Cymbidium, Phalaenopsis, Dendrobium and Paphiopedillum (Orchidaceae), and Spathiphyllum and Syngonium (Araceae). Biologia (sect. Bot) 69(6):750–755Google Scholar
  120. Teixeira da Silva JA, Zeng SJ, Dobránszki J, Galdiano R Jr, Cardoso JC, Vendrame WA (2014d) In vitro conservation of Dendrobium germplasm. Plant Cell Rep 33(9):1413–1423PubMedGoogle Scholar
  121. Teo CKH, Neumann KH (1978) The isolation and hybridization of protoplasts from orchids. Orchid Rev 86:186–189Google Scholar
  122. Thimijan RW, Heins RD (1983) Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience 18(6):818–822Google Scholar
  123. Vacin E, Went FW (1949) Some pH changes in nutrient solutions. Bot Gaz 110:605–613Google Scholar
  124. Vichiato MRM, Vichiato M, Pasqual M, Castro DM, Dutra LF (2007) Indução e identificação de tetraplóides em Dendrobium nobile Lindl. (Orchidaceae). Rev Ciên Agron 38(4):385–390 (in Portuguese with English abstract)Google Scholar
  125. Vij SP, Pathak P (1989) Micropropagation of Dendrobium chrysanthum, through pseudobulb segments. J Orchid Soc India 3:25–28Google Scholar
  126. Vyas S, Kapai VY, Kapoor P, Guha S, Usha Rao I (2012) In vitro plantlet regeneration from protocorms of Dendrobium lituiflorum Lindl. and Cymbidium bicolor Lindl. and their acclimatization: effect of salts, sucrose, and banana extract. J Hortic Sci Biotechnol 87(5):485–492Google Scholar
  127. Wang Y, Luo JP, Wu HQ, Jin H (2009) Conversion of protocorm-like bodies of Dendrobium huoshanense to shoots: the role of polyamines in relation to the ratio of total cytokinins and indole-3-acetic acidindole-3-acetic acid. J Plant Physiol 166:2013–2022PubMedGoogle Scholar
  128. Wei M, Jiang ST, Luo JP (2007) Study on the kinetics of two-stage cultivation of protocorm-like bodies from Dendrobium huoshanense for cell growth and synthesis of polysaccharides. Chin J Biotechnol 23:79–84Google Scholar
  129. Wei M, Wei SH, Yang CY (2010) Effect of putrescine on the conversion of protocormlike [sic] bodies of Dendrobium officinale to shoots. Plant Cell Tissue Organ Cult 102:145–151Google Scholar
  130. Wei M, Yang CY, Wei SH (2012) Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. J Plant Physiol 169:770–774PubMedGoogle Scholar
  131. Winarto B, Rachmawati F (2013) In vitro propagation protocol of Dendrobium ‘Gradita 31’ via protocorm like bodies. Thammasat Int J Sci Technol 18(2):54–68Google Scholar
  132. Winarto B, Rachmawati F, Santi A, Teixeira da Silva JA (2013) Mass propagation of Dendrobium ‘Zahra FR 62’, a new hybrid used for cut flowers, using bioreactor culture. Sci Hortic 161:170–180Google Scholar
  133. Xiao Y, Zhang Y, Dang K, Wang D (2007) Growth and photosynthesis of Dendrobium candidum plantlets cultured photoautotrophically. Prop Ornam Plants 7:89–96Google Scholar
  134. Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue Organ Cult 105:149–158Google Scholar
  135. Yang YZ, Hu RS, Shen GY, Sun TZ (2011) Tissue culture and rapid propagation of Dendrobium henanense. Jiansu Agri Sci 39(4):40–42 (in Chinese with English abstract)Google Scholar
  136. Yasugi S, Shinto H (1994) Formation of multiple shoots and regenerated plantlets by culture of pseudobulb segment in Nobile type Dendrobium. Plant Tissue Cult Lett 11(2):153–156Google Scholar
  137. Yong JWH, Ge L, Ng YF, Tan SN (2009) The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14:5144–5164PubMedGoogle Scholar
  138. Zeng SJ, Huang WC, Wu KL, Zhang JX, Teixeira da Silva JA, Duan J (2015a) In vitro propagation of Paphiopedilum orchids. Crit Rev Biotechnol. doi: 10.3109/07388551.2014.993585 PubMedGoogle Scholar
  139. Zeng SJ, Zhang Y, Teixeira da Silva JA, Wu KL, Zhang JX, Duan J (2015b) Seed biology and in vitro seed germination of Cypripedium. Crit Rev Biotechnol 35(3):279–292Google Scholar
  140. Zhai YT, Fu YL, Jiang L (2010) Research of inflencing [sic] factors in multiple shoot clumps proliferation of Dendrobium huoshanense. Chin Agric Sci Bull 26(11):258–260 (in Chinese with English abstract)Google Scholar
  141. Zhang BQ, Zhang Y, Wang Y, Li ZJ, Zhu XT, Lu CY (2009) Polyploid induction of Nobile-type Dendrobium. Acta Hortic Sin 36(9):1381–1384 (in Chinese with English abstract)Google Scholar
  142. Zhao P, Wang W, Feng FS, Wu F, Yang ZQ, Wang WJ (2007) High-frequency shoot regeneration through transverse thin cell layer culture in Dendrobium candidum Wall ex Lindl. Plant Cell Tissue Organ Cult 90:131–139Google Scholar
  143. Zhao P, Wu F, Feng FS, Wang WJ (2008) Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall ex Lindl. In Vitro Cell Dev Biol Plant 44:178–185Google Scholar
  144. Zhao P, Wang WJ, Sun MX (2011) Characterization and expression pattern analysis of DcNAC gene in somatic embryos of Dendrobium candidum Wall Ex Lindl. Plant Cell Tissue Organ Cult 107:151–159Google Scholar
  145. Zhao XB, Wu WJ, Pang L, Cai GX (2012) Study on key technology of rapid culture and propagation for Dendrobium candidum as rare and endangered medicinal materials. J TCM Univ Hunan 32(3):27–30 (in Chinese with English abstract)Google Scholar
  146. Zhao D, Hu G, Chen Z, Shi Y, Zheng L, Tang A, Long C (2013) Micropropagation and in vitro flowering of Dendrobium wangliangii: a critically endangered medicinal orchid. J Med Plants Res 7(28):2098–2110Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.KagawaJapan
  2. 2.Department of Rural DevelopmentCentro de Ciências Agrárias, UFSCarArarasBrazil
  3. 3.Research Institute of NyíregyházaUniversity of DebrecenDebrecenHungary
  4. 4.Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical GardenChinese Academy of SciencesGuangzhouChina

Personalised recommendations