Skip to main content
Log in

A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean.

Abstract

An efficient genetic transformation system is crucial for promoter analysis in plants. Agrobacterium-mediated transformation is the most popular method to produce transgenic hairy roots or plants. In the present study, first, we compared the two different Agrobacterium rhizogenes-mediated hairy root transformation methods using either constitutive CaMV35S or the promoters of root-preferential genes, GmEXPB2 and GmPAP21, in soybean, and found the efficiency of in vitro hairy root transformation was significantly higher than that of in vivo transformation. We compared Agrobacterium rhizogenes-mediated hairy root and Agrobacterium tumefaciens-mediated whole plant transformation systems. The results showed that low-phosphorous (P) inducible GmEXPB2 and GmPAP21 promoters could not induce the increased expression of the GUS reporter gene under low P stress in both in vivo and in vitro transgenic hairy roots. Conversely, GUS activity of GmPAP21 promoter was significantly higher at low P than high P in whole plant transformation. Therefore, both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker D (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact J 14:695–700

    Article  CAS  Google Scholar 

  • Carrington JC, Freed DD (1990) Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J Virol 64:1590–1597

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16:664–670

    PubMed  CAS  Google Scholar 

  • Cheng LY, Bucciarelli B, Shen JB, Allan D, Vance C (2011) Update on white lupin cluster root acclimation to phosphorus deficiency. Plant Physiol 156:1025–1032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cho HJ, Farrand SK, Noel GR, Widholm JM (2000) High efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204

    Article  PubMed  CAS  Google Scholar 

  • Clemente T, LaValle BJ, Howe AR, Ward DC, Rozman RJ, Hunte PE, Broyles DL, Kasten DS, Hinchee MA (2000) Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci 40:797–803

    Article  CAS  Google Scholar 

  • Collier R, Fuchs B, Walter N, Lutke WK, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Navarrete G, Alvarado-Affantranger X, Olivares J, Díaz-Camino C, Santana O, Murillo E, Guillén G, Sánchez-Guevara N, Acosta J, Quinto C, Li D, Gresshoff PM, Sánchez F (2006) Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant Microbe Interact 19:1385–1393

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Navarrete G, Alvarado-Affantranger X, Olivares J, Guillén G, Díaz-Camino C, Campos F, Quinto C, Gresshoff PM, Sanchez F (2007) Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nat Protoc 2:1819–1824

    Article  PubMed  CAS  Google Scholar 

  • Estruch JJ, Chriqui D, Grossmann K, Schell J, Spena A (1991) The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10:2889–2895

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gidoni D, Brosio P, Bond-Nutter D, Bedbrook J, Dunsmuir P (1989) Novel cis-acting elements in Petunia Cab gene promoters. Mol Gen Genet 215:337–344

    Article  PubMed  CAS  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    Article  PubMed  CAS  Google Scholar 

  • Guo WB, Zhao J, Li XX, Qin L, Yan XL, Liao H (2011) A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66:541–552

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kereszt A, Li D, Indrasumunar A, Nguyen C, Nontachaiyapoom S, Mark Kinkema, Gresshoff PM (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2:948–952

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Blackhall NW, Power JB, Cocking EC, Tepfer D, Davey MR (2001) Genetic and morphological transformation of rice with the rolA gene from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Sci 161:917–925

    Article  CAS  Google Scholar 

  • Li J, Todd TC, Trick HN (2010) Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29:113–123

    Article  PubMed  CAS  Google Scholar 

  • Li CC, Gui SH, Yang T, Liao H, Wang XR (2012) Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Ann Bot 109:275–285

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paz MM, Shou HX, Guo ZB, Zhang ZY, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explants. Euphytica 136:167–179

    Article  CAS  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22

    Article  CAS  Google Scholar 

  • Preiszner J, VanToai TT, Huynh L, Bolla RI, Yen HH (2001) Structure and activity of a soybean Adh promoter in transgenic hairy roots. Plant Cell Rep 20:763–769

    Article  CAS  Google Scholar 

  • Qin L, Guo YX, Chen LY, Liang RK, Gu M, Xu GH, Zhao J, Walk T, Liao H (2012a) Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS ONE 7:e47726

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qin L, Zhao J, Tian J, Chen LY, Sun ZA, Guo YX, Lu X, Gu M, Xu GH, Liao H (2012b) The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol 159:1634–1643

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rao AQ, Bakhsh A, Kiani S, Shahzad K, Shahid AA, Husnain T, Riazuddin S (2009) The myth of plant transformation. Biotechnol Adv 27:753–763

    Article  PubMed  Google Scholar 

  • Rosellini D (2012) Selectable markers and reporter genes: a well furnished toolbox for plant science and genetic engineering. Crit Rev Plant Sci 31:401–453

    Article  CAS  Google Scholar 

  • Spanò L, Mariotti D, Cardarelli M, Branca C, Costantino P (1988) Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol 87:479–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunilkumar G, Mohr L, Lopata-Finch E, Emani C, Rathore KS (2002) Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol 50:463–474

    Article  PubMed  CAS  Google Scholar 

  • Tercè-Laforgue T, Carrayol E, Cren M, Desbrosses G, Hecht V, Hirel B (1999) A strong constitutive positive element is essential for the ammonium-regulated expression of a soybean gene encoding cytosolic glutamine synthetase. Plant Mol Biol 39:551–564

    Article  PubMed  Google Scholar 

  • Uhde-Stone C, Liu J, Zinn K, Allan D, Vance C (2005) Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress. Plant J 44:840–853

    Article  PubMed  CAS  Google Scholar 

  • Wang XR, Wang YX, Tian J, Lim BL, Yan XL, Liao H (2009) Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 151:233–240

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu XB, Guo S, Chen K, Song HM, Liu JJ, Guo LB, Qian Q, Wang HZ (2010) A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco. Biotechnol Lett 32:1533–1539

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Xing A, Staswick P, Clemente TE (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult 56:37–46

    Article  CAS  Google Scholar 

  • Zhou J, Xie JN, Liao H, Wang XR (2014) Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiol Plantarum 150:194–204

Download references

Acknowledgments

We are grateful to Dr. Kan Wang for the generous gift of the pTF102 vector, and Dr. Peter M. Gresshoff for A. rhizogenes strain K599. We thank CC Li and XX Li for GmPAP21 and GmEXPB2 vector constructs. We also thank Mrs./Mr. Jun Fang, Jiao Zhou, Shuang Zhang and Tao Yang for technical help in soybean whole plant transformation. We are also grateful to the anonymous referees for their valuable comments on two previous versions. This research is supported by funds from the National Natural Science Foundation of China (31372126), and National Key Basic Research Special Funds of China (2011CB100301).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiurong Wang.

Additional information

Communicated by Howard S. Judelson.

C. Li and H. Zhang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, H., Wang, X. et al. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean. Plant Cell Rep 33, 1921–1932 (2014). https://doi.org/10.1007/s00299-014-1669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1669-5

Keywords

Navigation