Skip to main content
Log in

Timing of the G1/S transition in tobacco pollen vegetative cells as a primary step towards androgenesis in vitro

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Mid-bicellular pollen vegetative cells in tobacco escape from G1 arrest and proceed to the G1/S transition towards androgenesis within 1 day under glutamine starvation conditions in vitro.

Abstract

In the Nicotiana tabacum pollen culture system, immature pollen grains at the mid-bicellular stage can mature in the presence of glutamine; however, if glutamine is absent, they deviate from their native cell fate in a few days. The glutamine-starved pollen grains cannot undergo maturation, even when supplied with glutamine later. Instead, they undergo cell division towards androgenesis slowly within 10 days in a medium containing appropriate nutrients. During the culture period, they ought to escape from G1 arrest to proceed into S phase as the primary step towards androgenesis. However, this event has not been experimentally confirmed. Here, we demonstrated that the pollen vegetative cells proceeded to the G1/S transition within approximately 15–36 h after the start of culture. These results were obtained by analyzing transgenic pollen possessing a fusion gene encoding nuclear-localizing GFP under the control of an E2F motif-containing promoter isolated from a gene encoding one of DNA replication licensing factors. Observations using a 5-ethynyl-2′-deoxyuridine DNA labeling and detection technique uncovered that the G1/S transition was soon followed by S phase. These hallmarks of vegetative cells undergoing dedifferentiation give us new insights into upstream events causing the G1/S transition and also provide a novel strategy to increase the frequency of the androgenic response in tobacco and other species, including recalcitrants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Berckmans B, De Veylder L (2009) Transcriptional control of the cell cycle. Curr Opin Plant Biol 12:599–605

    Article  CAS  PubMed  Google Scholar 

  • Berger F, Twell D (2011) Germline specification and function in plants. Annu Rev Plant Biol 62:461–484

    Article  CAS  PubMed  Google Scholar 

  • Boudolf V, Vlieghe K, Beemster GTS, Magyar Z, Acosta JAT, Maes S, Van Der Schueren E, Inze D, De Veylder L (2004) The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell 16:2683–2692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bourgin JP, Nitsch JP (1967) Obtention de Nicotiana haploids a partir d’etamines cultivees in vitro. Ann Physiol 9:377–382

    Google Scholar 

  • Chaboute ME, Clement B, Sekine M, Philipps G, Chaubet-Gigot N (2000) Cell cycle regulation of the tobacco ribonucleotide reductase small subunit gene is mediated by E2F-like elements. Plant Cell 12:1987–2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaboute ME, Clement B, Philipps G (2002) S phase and meristem specific expression of the tobacco RNR1b gene is mediated by an E2F element located in the 5′ leader sequence. J Biol Chem 277:17845–17851

    Article  CAS  PubMed  Google Scholar 

  • Chiu WI, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Chuong PV, Beversdorf WD (1985) High frequency embryogenesis through isolated microspore culture in Brassica napus L. and B. carinata Braun. Plant Sci 39:219–226

    Article  Google Scholar 

  • Claphman D (1971) In vitro development of callus from the pollen of Lolium and Hordeum. Z Pflanzenzucht 69:142–155

    Google Scholar 

  • Costas C, Sanchez MP, Sequeira-Mendes J, Gutierrez C (2011) Progress in understanding DNA replication control. Plant Sci 181:203–209

    Article  CAS  PubMed  Google Scholar 

  • D’amato F, Devreux M, Mugnozza GTS (1965) The DNA content of the nuclei of the pollen grains in tobacco and barley. Caryologia 18:377–382

    Article  Google Scholar 

  • De Jager SM, Menges M, Bauer UM, Murray JAH (2001) Arabidopsis E2F1 binds a sequence present in the promoter of S-phase-regulated gene AtCDC6 and is a member of a multigene family with differential activities. Plant Mol Biol 47:555–568

    Article  PubMed  Google Scholar 

  • De Veylder L, Engler J, Burssens S, Manevski A, Lescure B, Montagu M, Engler G, Inze D (1999) A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta 208:453–462

    Article  PubMed  Google Scholar 

  • Francis D (2007) The plant cell cycle—15 years on. New Phytol 174:261–278

    Article  CAS  PubMed  Google Scholar 

  • Fulnecek J, Matyasek R, Kovarik A (2009) Faithful inheritance of cytosine methylation patterns in repeated sequences of the allotetraploid tobacco correlates with the expression of DNA methyltransferase gene families from both parental genomes. Mol Genet Genomics 281:407–420

    Article  CAS  PubMed  Google Scholar 

  • Garrido D, Eller N, Heberle-Bors E, Vicente O (1993) De novo transcription of specific mRNAs during the induction of tobacco pollen embryogenesis. Sex Plant Reprod 6:40–45

    Article  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Harashima H, Dissmeyer D, Schnittger A (2013) Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 23:345–356

    Article  CAS  PubMed  Google Scholar 

  • Imamura J, Okabe E, Kyo M, Harada H (1982) Embryogenesis and plantlet formation through direct culture of isolated pollen of Nicotiana tabacum cv. Samsun and Nicotiana rustica cv. Rustica. Plant Cell Physiol. 23:713–716

    Google Scholar 

  • Ito M, Criqui M, Sakabe M, Ohno T, Hata S, Kouchi H, Hashimoto J, Fukuda H, Komamine A, Watanabe A (1997) Cell-cycle regulated transcription of A- and B-type plant cyclin genes in synchronous cultures. Plant J. 11:983–992

    Article  CAS  PubMed  Google Scholar 

  • Joubes J, Chevalier C, Dudits D, Heberle-Bors E, Inze D, Umeda M, Renaudin JP (2000) CDK-related protein kinases in plants. Plant Mol Biol 43:607–621

    Article  CAS  PubMed  Google Scholar 

  • Keller WA, Armstrong KC (1978) High frequency production of microspore-derived plants from Brassica napus anther culture. Z Pflantzenzuchtg 80:100–108

    Google Scholar 

  • Kim HJ, Oh SA, Brownfield L, Hong SH, Ryu H, Hwang I, Twell D, Nam HG (2008) Control of plant germline proliferation by SCFFBL17 degradation of cell cycle inhibitors. Nature 455:1134–1137

    Article  CAS  PubMed  Google Scholar 

  • Komaki S, Sugimoto K (2012) Control of the plant cell cycle by developmental and environmental cues. Plant Cell Physiol 53:953–964

    CAS  PubMed  Google Scholar 

  • Kosugi S, Ohashi Y (2002) E2F sites that can interact with E2F proteins cloned from rice are required for meristematic tissue-specific expression of rice and tobacco proliferating cell nuclear antigen promoters. Plant J. 29:45–59

    Article  CAS  PubMed  Google Scholar 

  • Kyo M, Harada H (1985) Studies on conditions for cell division and embryogenesis in isolated pollen culture of Nicotiana rustica. Plant Physiol 79:90–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432

    Article  CAS  PubMed  Google Scholar 

  • Kyo M, Harada H (1990) Phosphorylation of proteins associated with embryogenic dedifferentiation of immature pollen grains of Nicotiana rustica. J Plant Physiol 136:716–722

    Article  CAS  Google Scholar 

  • Kyo M, Yamaji N, Yuasa Y, Maeda T, Fukui H (2002) Isolation of cDNA coding for NtEPb1-3, marker proteins for pollen dedifferentiation in a tobacco pollen culture system. Plant Sci 163:1055–1061

    Article  CAS  Google Scholar 

  • Kyo M, Hattori S, Yamaji N, Pechan P, Fukui H (2003) Cloning and characterization of cDNAs associated with the embryogenic dedifferentiation of tobacco immature pollen grains. Plant Sci 164:1057–1066

    Article  CAS  Google Scholar 

  • Maluszynski M, Kasha KJ, Szarejko I (2003) Published double haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forester BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 309–335

    Chapter  Google Scholar 

  • Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  CAS  PubMed  Google Scholar 

  • Menges M, Henning L, Gruissem W, Murray JAH (2003) Genome-wide expression in an Arabidopsis cell suspension. Plant Mole Biol 53:423–442

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakamura M, Tsunoda T, Obokata J (2002) Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator. Plant J. 29:1–10

    Article  CAS  PubMed  Google Scholar 

  • Reichheld J, Chaubet N, Shen W, Renaudin J, Gigot C (1996) Multiple A-type cyclins express sequentially during the cell cycle in Nicotiana tabacum BY2 cells. Proc Natl Acad Sci USA 93:13819–13824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renaudin JP, Doonan JH, Freeman D, Hashimoto J, Hirt H, Inze D, Jacobs T, Kouchi H, Rouze P, Sauter M, Savoure A, Sorrell DA, Sundaresan V, Murray JAH (1996) Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol Biol 32:1003–1018

    Article  CAS  PubMed  Google Scholar 

  • Sangwan-Norrell BS (1977) Androgenic stimulating factors in the anther and isolated pollen grain culture of Datura innoxia Mill. J Exp Bot 28:843–852

    Article  Google Scholar 

  • Sanz L, Dewitte W, Forzania C, Patella F, Nieuwland J, Wen B, Quelhas P, Jagerd S, Titmus C, Campilho A, Ren H, Estelle M, Wang H, Murray J (2011) The Arabidopsis D-Type cyclin CYCD2;1 and the inhibitor ICK2/KRP2 modulate auxin-induced lateral root formation. Plant Cell 23:641–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segui-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore derived embryogenesis. Physiol Plant 134:1–12

    Article  CAS  PubMed  Google Scholar 

  • Sorrell DA, Combettes B, Chaubet-Gigot N, Gigot C, Murray JAH (1999) Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells. Plant Physiol 119:343–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sorrell DA, Menges M, Healy JMS, Deveaux Y, Amano C, Su Y, Nakagami H, Shinmyo A, Doonan JH, Sekine M, Murray JAH (2001) Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar bright yellow-2 cells. Plant Physiol 126:1214–1223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens R, Mariconti L, Rossignol P, Perennes C, Cella R, Bergounioux C (2002) Two E2F sites in the Arabidopsis MCM3 promoter have different roles in cell cycle activation and meristematic expression. J Biol Chem 277:32978–32984

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Tran NQ, Dang HQ, Tuteja R (2011) Plant MCM proteins: role in DNA replication and beyond. Plant Mol Biol 77:537–545

    Article  CAS  PubMed  Google Scholar 

  • Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster GTS, Gruissem W, de Peer YV, Inze D, Veylder LD (2005) Genome-wide identification of potential plant E2F target genes. Plant Physiol 139:316–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei ZM, Kyo M, Harada H (1986) Callus production and plant regeneration through direct culture of isolated pollen of Hordeum vulgare cv. Sabarlis. Theor Appl Genet 72:252–255

    Article  CAS  PubMed  Google Scholar 

  • Yamaji N, Kyo M (2006) Two promoters conferring active gene expression in vegetative nuclei of tobacco immature pollen undergoing embryogenic dedifferentiation. Plant Cell Rep 25:749–757

    Article  CAS  PubMed  Google Scholar 

  • Zarsky V, Garrido D, Rihova L, Tupy J, Vicente O, Heberle-Bors E (1992) Derepression of the cell cycle by starvation is involved in the induction of tobacco pollen embryogenesis. Sex Plant Reprod 5:189–194

    Article  Google Scholar 

  • Zhao X, Harashima H, Dissmeyer N, Pusch S, Weimer AK et al. (2012) A general G1/S-phase cell-cycle control module in the flowering plant Arabidopsis thaliana. PLoS Genet 8(8):e1002847. doi:10.1371/journal.pgen.1002847

Download references

Acknowledgments

We thank the students in our laboratory at the time when this research was conducted, K. Kohra, K. Goto, A. Kawamoto, W. Takahashi, and Y. Hori, for their efforts towards completing this study.

Conflict of interest

The authors have no competing financial interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Kyo.

Additional information

Communicated by Fumihiko Sato.

All authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyo, M., Nagano, A., Yamaji, N. et al. Timing of the G1/S transition in tobacco pollen vegetative cells as a primary step towards androgenesis in vitro. Plant Cell Rep 33, 1595–1606 (2014). https://doi.org/10.1007/s00299-014-1640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1640-5

Keywords