Skip to main content
Log in

Cosuppression of RBCS3B in Arabidopsis leads to severe photoinhibition caused by ROS accumulation

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Cosuppression of an Arabidopsis Rubisco small subunit gene RBCS3B at Arabidopsis resulted in albino or pale green phenotypes which were caused by ROS accumulation

Abstract

As the most abundant protein on Earth, Rubisco has received much attention in the past decades. Even so, its function is still not understood thoroughly. In this paper, four Arabidopsis transgenic lines (RBCS3B-7, 18, 33, and 35) with albino or pale green phenotypes were obtained by transformation with a construct driving expression of sense RBCS3B, a Rubisco small subunit gene. The phenotypes produced in these transgenic lines were found to be caused by cosuppression. Among these lines, RBCS3B-7 displayed the most severe phenotypes including reduced height, developmental arrest and plant mortality before flowering when grown under normal light on soil. Chloroplast numbers in mesophyll cells were decreased compared to WT, and stacked thylakoids of chloroplasts were broken down gradually in RBCS3B-7 throughout development. In addition, the RBCS3B-7 line was light sensitive, and PSII activity measurement revealed that RBCS3B-7 suffered severe photoinhibition, even under normal light. We found that photoinhibition was due to accumulation of ROS, which accelerated photodamage of PSII and inhibited the repair of PSII in RBCS3B-7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adhikari ND, Froehlich JE, Strand DD, Buck SM, Kramer DM, Larkin RM (2011) GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-chelatase and promote chlorophyll biosynthesis in Arabidopsis. Plant Cell 23:1449–1467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alawady AE, Grimm B (2005) Tobacco Mg-protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant J 41:282–290

    Article  CAS  PubMed  Google Scholar 

  • Ananyev G, Wydrzynski T, Renger G, Klimov V (1992) Transient peroxide formation by the manganese-containing, redox-active donor side of photosystem II upon inhibition of O2 evolution with lauroylcholine chloride. Biochim Biophys Acta 1100:303–311

    Article  Google Scholar 

  • Andersson B, Barber J (1996) Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht, pp 101–121

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II: inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  CAS  PubMed  Google Scholar 

  • Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bradbeer JW, Atkinson YE, Börner T, Hagemann R (1979) Cytoplasmic synthesis of plastid polypeptides may be controlled by plastid-synthesized RNA. Nature 279:816–817

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cheminant S, Wild M, Bouvier F, Pelletier S, Renou JP, Erhardt M, Hayes S, Terry MJ, Genschik P, Achard P (2009) DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis. Plant Cell 23:1849–1860

    Article  Google Scholar 

  • Chen GX, Kazimir J, Cheniae GM (1992) Photoinhibition of hydroxylamine-extracted photosystem II membranes: studies of the mechanism. Biochemistry 31:11072–11083

    Article  CAS  PubMed  Google Scholar 

  • Clegg KM (1956) The application of the anthrone reagent to the estimation of starch in cereals. J Sci Food Agr 7:40–44

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dalmay TA, Hamilton S, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    Article  CAS  PubMed  Google Scholar 

  • Dean C, Pichersky E, Dunsmuir P (1989) Structure, evolution and regulation of rbcS genes in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40:415–439

    Article  CAS  Google Scholar 

  • Falbel TG, Meehl JB, Staehelin LA (1996) Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol 112:821–832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fox TD (1996) In: Hershey JWB, Matthews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Lab Press, Cold Spring Harbor, pp 733–758

    Google Scholar 

  • Furbank RT, Julie A, Chitty JA, Caemmerer SV, Jenkins CLD (1996) Antisense RNA inhibition of RbcS gene expression reduces Rubisco level and photosynthesis in the C4 Plant Flavera bidentis. Plant Physiol 111:725–734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Asami T, Davies WJ, Jones AM, Baker NR, Mullineauxa P (2009) The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 21:2143–2162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18:1177–1187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang XZ, Li JY, Bao F, Zhang XY, He SY (2010) A gain-of-function mutation in the Arabidopsis disease resistance gene RPP4 confers sensitivity to low temperature. Plant Physiol 154:796–809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H (2011) Functional incorporation of Sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol 156:1603–1611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Izumi M, Tsunoda H, Suzuki Y, Makino A, Ishida H (2012) RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. J Exp Bot 63:2159–2170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jain V, Kaiser W, Huber SC (2008) Cytokinin inhibits the proteasome-mediated degradation of carbonylated proteins in Arabidopsis leaves. Plant Cell Physiol 49:843–852

    Article  CAS  PubMed  Google Scholar 

  • Kakizaki T, Matsumura H, Nakayama K, Che FS, Terauchi R, Inaba T (2009) Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiol 151:1339–1353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kindgren P (2010) The chloroplast talks-insights into the language of the chloroplast in Arabidopsis. Thesis of Umeå University (ISBN: 978-91-7459-069-2)

  • Kleine T, Maier UG, Leister D (2009) DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annul Rev Plant Biol 60:115–138

    Article  CAS  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci 102:11118–11123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubis S, Patel R, Combe J, Bedard J, Kovacheva S, Lilley K, Biehl A, Leister D, Rios G, Koncz C, Jarvis P (2004) Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell 16:2059–2077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kunz C, Schöb H, Leubner-Metzger G, Glazov E, Meins F (2001) β-1,3-Glucanase and chitinase transgenes in hybrids show distinctive and independent patterns of posttranscriptional gene silencing. Planta 212:243–249

    Article  CAS  PubMed  Google Scholar 

  • Lan Y, Mott KA (1991) Determination of apparent Km values for Ribulose1,5-BISPHOSPHATE carboxylase/oxygenase (Rubisco) activase using the spectrophotometric assay of Rubisco activity. Plant Physiol 95:604–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mann CC (1999) Genetic engineers aim to soup up crop photosynthesis. Science 283:314–316

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci 99:12246–12251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell RAC, Joyce PA, Rong H, Evans VJ, Madgwick PJ, Parry MAJ (2004) Loss of decreased-rubisco phenotype between generations of wheat transformed with antisense and sense rbcS. Ann Appl Biol 145:209–216

    Article  CAS  Google Scholar 

  • Mitra S, Baldwin IT (2008) Independently silencing two photosynthetic proteins in Nicotiana attenuata has different effects on herbivore resistance. Plant Physiol 148:1128–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyao M, Ikeuchi M, Yamamoto N, Ono T (1995) Specific degradation of the D1 protein of photosystem II by treatment with hydrogen peroxide in darkness: implication for the mechanism of degradation of the D1 protein under illumination. Biochemistry 34:10019–10026

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci 105:15184–15189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mgprotoporphyrin IX accumulation. Proc Natl Acad Sci 105:15178–15183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murchie E, Horton P (1998) Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant, Cell Environ 21:139–148

    Article  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible Co-Suppression of homologous genes in trans. Plant cell 2:279–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura Y, Shikanai T, Nakamura S, Kawai-Yamada M, Uchimiya U (2012) Gsp1 triggers the sexual developmental program including inheritance of chloroplast DNA and mitochondrial DNA in Chlamydomonas reinhardtii. Plant cell 24:2401–2414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Suzuki Y, Yoshizawa R, Kanno K, Makino A (2012) Effect of individual suppression of RBCS multigene family on Rubisco contents in rice leaves. Plant Cell Environ 35:546–553

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Ikeuchi M, Yamamoto N, Ono T, Miyao M (1996) Selective and specific cleavage of the D1 and D2 proteins of photosystem II by exposure to singlet oxygen: factors responsible for the susceptibility to cleavage of the proteins. Biochim Biophys Acta 1274:73–79

    Article  Google Scholar 

  • op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Göbel C, Feussner I, Nater M (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    Article  Google Scholar 

  • Petit JM, Briat JF, Lobreaux S (2001) Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J 359:575–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pogány M, Rad UV, Grün S, Dongó A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J (2009) Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria Pathosystem. Plant Physiol 151:1459–1475

    Article  PubMed Central  PubMed  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  PubMed  Google Scholar 

  • Pyke KA, Leech RM (1991) Rapid image analysis screening procedure for identifying chloroplast number mutants in mesophyll cells of Arabidopsis thaliana (L.) Heynh. Plant Physiol 96:1193–1195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiao M, Zhao ZQ, Song YQ, Liu ZH, Cao LX, Yu YC, Li S, Xiang FN (2012) Proper regeneration from in vitro cultured Arabidopsis thaliana requires the microRNA-directed action of an auxin response factor. Plant Journal 71:14–22

    Article  CAS  PubMed  Google Scholar 

  • Rebeiz CA, Mattheis JR, Smith BB, Rebeiz CC, Dayton DF (1975) Chloroplast biosynthesis and accumulation of protochlorophyll isolated etioplasts and developing chloroplasts. Arch Biochem Biophys 171:549–567

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  CAS  PubMed  Google Scholar 

  • Roe JH, Epstein JH, Goldstein NP (1949) A photometric method for the determination of inulin in plasma and urine. J Biol Chem 178:839–845

    CAS  PubMed  Google Scholar 

  • Schneider G, Lindqvist Y, Branden CA (1992) RUBISCO: structure and mechanism. Annu Rev Biophys Biomol Struct 21:119–143

    Article  CAS  PubMed  Google Scholar 

  • Sillanpää M, Kontunen-Soppela S, Luomala EM, Sutinen S, Kangasjärvi J, Häggman H, Vapaavuori E (2005) Expression of senescence-associated genes in the leaves of silver birch (Betula pendula). Tree Physiol 25:1161–1172

    Article  PubMed  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) RUBISCO: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  PubMed  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421:79–83

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, Yoshizawa R, Kojima S, Hayakawa T, Yamaya T, Mae T, Makino A (2007) Increased Rubisco content in transgenic rice transformed with the‘sense’ rbcS gene. Plant Cell Physiol 48:626–637

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2005) Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. Biochim Biophys Acta 1708:352–361

    Article  CAS  PubMed  Google Scholar 

  • Tripathy BC, Rebeiz CA (1985) Chloroplast biogenesis: quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyll (ides) by spectrofluorometry. Electr Power Syst Res 8:237–247

    Article  Google Scholar 

  • Whitney SM, Kane HJ, Houtz RL, Sharwood RE (2009) Rubisco oligomers composed of linked small and large subunits assemble in tobacco plastids and have higher affinities for CO2 and O2. Plant Physiol 149:1887–1895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wollman FA, Minai L, Nechushtai R (1999) The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochim Biophys Acta 1411:21–85

    Article  CAS  PubMed  Google Scholar 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nature 9:383–395

    CAS  Google Scholar 

  • Wostrikoff K, Stern D (2007) Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts. Proc Natl Acad Sci 104:6466–6471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wostrikoff K, Clark A, Sato S, Clemente T, Stern D (2012) Ectopic expression of Rubisco subunits in maize mesophyll cells does not overcome barriers to cell type-specific accumulation. Plant Physiol 160:419–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang WN, Jiang DH, Jiang JF, He YH (2010) A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant Journal 62:663–673

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National High Technology Research and Development Program of China (2013AA102602) and the National Key Basic Research Program of China (2011CB109300). We thank Bao-Ping Chen for making semi-thin and ultrathin sections and Hong Deng for observing sections by TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hua.

Additional information

Communicated by Y. Lu.

G.-M. Zhan and R.-J. Li authors contributed equally to the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 681 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, GM., Li, RJ., Hu, ZY. et al. Cosuppression of RBCS3B in Arabidopsis leads to severe photoinhibition caused by ROS accumulation. Plant Cell Rep 33, 1091–1108 (2014). https://doi.org/10.1007/s00299-014-1597-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1597-4

Keywords

Navigation