Skip to main content
Log in

Molecular evidence of the involvement of heat shock protein 90 in brassinosteroid signaling in Arabidopsis T87 cultured cells

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A closer association of HSP90s with brassinosteroid signaling is suggested by the brassinosteroid-triggered formation of an HSP90-containing macromolecular complex and the direct interaction between HSP90.3 and BES1.

Abstract

Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that is reportedly involved in the proper folding, stabilization, intracellular trafficking, maintenance and degradation of numerous proteins, as well as the facilitation of cellular signaling in various organisms including plants. Brassinosteroids (BRs), a class of unique steroidal hormones, play crucial roles in plant growth and development. The interaction between HSP90 proteins and BR action has been poorly understood. Here, we present molecular evidence suggesting that HSP90 proteins have a function(s) in BR signal transduction. First, blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis linked immunoblotting demonstrated that a bioactive BR, brassinolide (BL), promotes the formation of some HSP90-containing macromolecular complexes with molecular weight more than 480 kDa in Arabidopsis T87 cultured cells. Second, HSP90.3, one of seven Arabidopsis HSP90 family proteins, was observed to interact in vitro with BRI1-EMS-SUPPRESSOR 1 (BES1), a transcription factor acting in BR signaling. Geldanamycin, an inhibitor of ATPase activity in HSP90, not only diminished HSP90.3 interaction with BES1 in vitro, but also suppressed BL-induced down-regulation of two BR biosynthesis genes, CONSTITUTIVE PHOTHOMORPHOGENESIS AND DWARFISM and DWARF4 in vivo. The results suggest the involvement of the HSP90/BES1 heterocomplexes in BR signaling-mediated feedback control in BR contents. Together, our results provide important clues to elucidate HSP90s’ functions in the BR signaling pathway in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277:39858–39866

    Article  CAS  PubMed  Google Scholar 

  • Bekh-Ochir D, Shimada S, Yamagami A, Kanda S, Ogawa K, Nakazawa M, Matsui M, Sakuta M, Osada H, Asami T, Nakano T (2013) A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling. Planta 237:1509–1525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Clément M, Leonhardt N, Droillard MJ, Reiter I, Montillet JL, Genty B, Laurière C, Nussaume L, Noël LD (2011) The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol 156:1481–1492

    Article  PubMed Central  PubMed  Google Scholar 

  • Clouse S, Sasse J (1998) BRASSINOSTEROIDS: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. N Biotechnol 26:131–136

    Article  CAS  PubMed  Google Scholar 

  • Fang S, Fu J, Yuan X, Han C, Shi L, Xin Y, Luo L, Yin Z (2009) Heat shock protein 90 regulates the stability of MEKK3 in HEK293 cells. Cell Immunol 259:49–55

    Article  CAS  PubMed  Google Scholar 

  • He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kadota Y, Shirasu K (2012) The HSP90 complex of plants. Biochim Biophys Acta 1823:689–697

    Article  CAS  PubMed  Google Scholar 

  • Kamphausen T, Fanghänel J, Neumann D, Schulz B, Rahfeld JU (2002) Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32:263–276

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    Article  CAS  PubMed  Google Scholar 

  • Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6:238–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lachowiec J, Lemus T, Thomas JH, Murphy PJ, Nemhauser JL, Queitsch C (2013) The protein chaperone HSP90 can facilitate the divergence of gene duplicates. Genetics 193:1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yu X, Thompson A, Guo M, Yoshida S, Asami T, Chory J, Yin Y (2009) Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J 58:275–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Ye H, Guo H, Yin Y (2010) Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proc Natl Acad Sci USA 107:3918–3923

    Article  CAS  PubMed  Google Scholar 

  • Nemoto K, Seto T, Takahashi H, Nozawa A, Seki M, Shinozaki K, Endo Y, Sawasaki T (2011) Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system. Phytochemistry 72:1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Dansako T, Yano K, Sakurai N, Suzuki H, Aoki K, Noji M, Saito K, Shibata D (2008) Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics. Plant Cell Physiol 49:242–250

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pérez JM, Ponce MR, Micol JL (2004) The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiol 134:101–117

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryu H, Cho H, Kim K, Hwang I (2010) Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol Cells 29:283–290

    Article  CAS  PubMed  Google Scholar 

  • Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol 8:86–92

    Article  CAS  PubMed  Google Scholar 

  • Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K, McLellan C, Kelley A, Kong SW, Queitsch C, Lindquist S (2007) Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLoS One 2:e648

    Article  PubMed Central  PubMed  Google Scholar 

  • Sekimata K, Kimura T, Kaneko I, Nakano T, Yoneyama K, Takeuchi Y, Yoshida S, Asami T (2001) A specific brassinosteroid biosynthesis inhibitor, Brz 2001: evaluation of its effects on Arabidopsis, cress, tobacco, and rice. Planta 213:716–721

    Article  CAS  PubMed  Google Scholar 

  • Shigeta T, Yasuda D, Mori T, Yoshimitsu Y, Nakamura Y, Yoshida S, Asami T, Okamoto S, Matsuo T (2011) Characterization of brassinosteroid-regulated proteins in a nuclear-enriched fraction of Arabidopsis suspension-cultured cells. Plant Physiol Biochem 49:985–995

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, Patil S, Kim TW, Ji H, Wong WH, Rhee SY, Wang ZY (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90–client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Takahashi C, Moreland NJ, Chang YT, Sawasaki T, Ryo A, Vasudevan SG, Suzuki Y, Yamamoto N (2012) Establishment of a robust dengue virus NS3–NS5 binding assay for identification of protein–protein interaction inhibitors. Antiviral Res 96:305–314

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol 138:1117–1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, Gendron JM, Jonassen EM, Lillo C, DeLong A, Burlingame AL, Sun Y, Wang ZY (2011) PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol 13:124–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signalling. Nature 441:96–100

    Article  CAS  PubMed  Google Scholar 

  • Wayne N, Bolon DN (2007) Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers. J Biol Chem 282:35386–35395

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Zhao J, Peng P, Chihara RK, Li J (2009) BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiol 150:710–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye H, Li L, Guo H, Yin Y (2012) MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 109:20142–20147

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci USA 105:7618–7623

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Riichiro Yoshida at the Faculty of Agriculture of Kagoshima University for their technical assistance and valuable advice on the generation of transgenic cells and the real-time PCR analysis. We are grateful to Dr. Keiichiro Nemoto and Dr. Hirotaka Takahashi at Ehime University and Dr. Yuki Yanagawa at RIKEN for their technical advice regarding the wheat germ cell-free protein expression system and AlphaScreen assay. We also thank Dr. Yasuo Niwa at the Graduate School of Integrated Pharmaceutical and Nutritional Sciences of the University of Shizuoka for providing the pUC18 plasmid containing CaMV 35S::sGFP(S65T)::Nos-T.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Sugimoto.

Additional information

Communicated by F. Sato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 899 kb)

Supplementary material 2 (DOCX 686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shigeta, T., Zaizen, Y., Asami, T. et al. Molecular evidence of the involvement of heat shock protein 90 in brassinosteroid signaling in Arabidopsis T87 cultured cells. Plant Cell Rep 33, 499–510 (2014). https://doi.org/10.1007/s00299-013-1550-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1550-y

Keywords