Skip to main content
Log in

Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key Message

When one of them was inhibited, the two pathways could compensate with each other to guarantee normal growth. Moreover, the sterol biosynthesis inhibitor miconazole could enhance ginsenoside level.

Abstract

Ginsenosides, a kind of triterpenoid saponins derived from isopentenyl pyrophosphate (IPP), represent the main pharmacologically active constituents of ginseng. In plants, two pathways contribute to IPP biosynthesis, namely, the mevalonate pathway in cytosol and the non-mevalonate pathway in plastids. This motivates biologists to clarify the roles of the two pathways in biosynthesis of IPP-derived compounds. Here, we demonstrated that both pathways are involved in ginsenoside biosynthesis, based on the analysis of the effects from suppressing either or both of the pathways on ginsenoside accumulation in Panax ginseng hairy roots with mevinolin and fosmidomycin as specific inhibitors for the mevalonate and the non-mevalonate pathways, respectively. Furthermore, the sterol biosynthesis inhibitor miconazole could enhance ginsenoside levels in the hairy roots. These results shed some light on the way toward better understanding of ginsenoside biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bach T, Weber T, Motel A (1990) Some properties of enzymes involved in the biosynthesis and metabolism of 3-hydroxy-3-methylglutaryl-CoA in plants. In: Towers GHN, Stafford H (eds) Biochemistry of the mevalonic acid pathway to terpenoids, recent advances in phytochemistry, vol 24. Springer, USA, pp 1–82. doi:10.1007/978-1-4684-8789-3_1

    Chapter  Google Scholar 

  • Bamba T, Murayoshi M, Gyoksen K, Nakazawa Y, Okumoto H, Katto H, Fukusaki E, Kobayashi A (2010) Contribution of mevalonate and methylerythritol phosphate pathways to polyisoprenoid biosynthesis in the rubber-producing plant Eucommia ulmoides oliver. J Biosci 65(5–6):363–372

    CAS  Google Scholar 

  • Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31(3):461–477. doi:10.1007/s00299-011-1165-0

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y, Song J, Lv A, Zhu Y, Sun C, Steinmetz A, Qian Z (2011) 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep 30(9):1593–1601. doi:10.1007/s00299-011-1070-6

    Article  CAS  PubMed  Google Scholar 

  • Dubey VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28(5):637–646

    Article  CAS  PubMed  Google Scholar 

  • Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24(9):403–409. doi:10.1016/j.tibtech.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  • Hampel D, Mosandl A, Wust M (2005) Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry 66(3):305–311. doi:10.1016/j.phytochem.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  • Hampel D, Swatski A, Mosandl A, Wust M (2007) Biosynthesis of monoterpenes and norisoprenoids in raspberry fruits (Rubus idaeus L.): the role of cytosolic mevalonate and plastidial methylerythritol phosphate pathway. J Agric Food Chem 55(22):9296–9304. doi:10.1021/jf071311x

    Article  CAS  PubMed  Google Scholar 

  • Heintze A, Gorlach J, Leuschner C, Hoppe P, Hagelstein P, Schulze-Siebert D, Schultz G (1990) Plastidic isoprenoid synthesis during chloroplast development: change from metabolic autonomy to a division-of-labor stage. Plant Physiol 93(3):1121–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hemmerlin A, Bach TJ (1998) Effects of mevinolin on cell cycle progression and viability of tobacco BY-2 cells. Plant J 14(1):65–74. doi:10.1046/j.1365-313X.1998.00095.x

    Article  CAS  PubMed  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278(29):26666–26676. doi:10.1074/jbc.M302526200

    Article  CAS  PubMed  Google Scholar 

  • Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW (2003) Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 22(3):224–230. doi:10.1007/s00299-003-0678-6

    Article  CAS  PubMed  Google Scholar 

  • Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277(47):45188–45194. doi:10.1074/jbc.M208659200

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Lee BS, In JG, Sun H, Yoon JH, Yang DC (2006) Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Plant Cell Rep 25(6):599–606. doi:10.1007/s00299-005-0095-0

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S (2013) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 14(1):245. doi:10.1186/1471-2164-14-245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang Y, Zhao S, Zhang X (2009) Antisense suppression of cycloartenol synthase results in elevated ginsenoside levels in Panax ginseng hairy Roots. Plant Mol Biol Rep 27(3):298–304

    Article  CAS  Google Scholar 

  • Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28(1):87–99. doi:10.1093/molbev/msq177

    Article  CAS  PubMed  Google Scholar 

  • Masse G, Belt ST, Rowland SJ, Rohmer M (2004) Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc Natl Acad Sci USA 101(13):4413–4418. doi:10.1073/pnas.0400902101

    Article  CAS  PubMed  Google Scholar 

  • Ormeno E, Mevy JP, Vila B, Bousquet-Melou A, Greff S, Bonin G, Fernandez C (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 67(2):276–284. doi:10.1016/j.chemosphere.2006.10.029

    Article  CAS  PubMed  Google Scholar 

  • Rodrígues-Concepción M, Gruissem W (1999) Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme. A reductase-independent lycopene accumulation. Plant Physiol 119:41–48. doi:10.1104/pp.119.1.41

    Article  Google Scholar 

  • Rodrígues-Concepción M, Fores O, Martinez-Garcia JF, Gonzalez V, Phillips MA, Ferrer A, Boronat A (2004) Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell 16(1):144–156. doi:10.1105/tpc.016204

    Article  Google Scholar 

  • Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang D (2010a) Gene ontology study of methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify genes involved in secondary metabolic pathway. Genetika 46(7):932–939

    CAS  PubMed  Google Scholar 

  • Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC (2010b) Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 37(7):3465–3472. doi:10.1007/s11033-009-9938-z

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Ito Y, Okada S, Murakami M, Abe H (2003) Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of Botryococcus braunii via the non-mevalonate pathway. Tetrahedron Lett 44(37):7035–7037. doi:10.1016/S0040-4039(03)01784-2

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Skorupinska-Tudek K, Poznanski J, Wojcik J, Bienkowski T, Szostkiewicz I, Zelman-Femiak M, Bajda A, Chojnacki T, Olszowska O, Grunler J, Meyer O, Rohmer M, Danikiewicz W, Swiezewska E (2008) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of dolichols in plants. J Biol Chem 283(30):21024–21035. doi:10.1074/jbc.M706069200

    Article  CAS  PubMed  Google Scholar 

  • Sreedhara Swamy KH, Sirsi M, Ramananda Rao GR (1974) Studies on the mechanism of action of miconazole: effect of miconazole on respiration and cell permeability of Candida albicans. Antimicrob Agents Chemother 5(4):420–425

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Nakagawa S, Kamide Y, Kobayashi K, Ohyama K, Hashinokuchi H, Kiuchi R, Saito K, Muranaka T, Nagata N (2009) Complete blockage of the mevalonate pathway results in male gametophyte lethality. J Exp Bot 60(7):2055–2064. doi:10.1093/jxb/erp073

    Article  CAS  PubMed  Google Scholar 

  • Talano MA, Oller AL, Gonzalez PS, Agostini E (2012) Hairy roots, their multiple applications and recent patents. Recent Pat Biotechnol 6(2):115–133

    Article  CAS  PubMed  Google Scholar 

  • Towler M, Weathers P (2007) Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep 26(12):2129–2136. doi:10.1007/s00299-007-0420-x

    Article  CAS  PubMed  Google Scholar 

  • Gao YY, Qiu AY, Pan QQ (2001) The analysis of phytosterols. China Oils Fats 26(1):25–28

    CAS  Google Scholar 

  • Zarn JA, Bruschweiler BJ, Schlatter JR (2003) Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ Health Perspect 111(3):255–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeidler J, Lichtenthaler HK (2001) Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation. Planta 213(2):323–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by funds from National High Technology Research and Development Program 863 (2013AA102604-3), National Natural Science Foundation of China and Fundamental (31270337), Specialized Research Fund for the Doctoral Program of Higher Education of China (20120061110038), and Fund for Undergraduate Innovation Training Program of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanlong Liang.

Additional information

Communicated by Q. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Wang, L., Liu, L. et al. Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep 33, 393–400 (2014). https://doi.org/10.1007/s00299-013-1538-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1538-7

Keywords

Navigation