Plant Cell Reports

, Volume 33, Issue 1, pp 143–151 | Cite as

Oryza sativa polyamine oxidase 1 back-converts tetraamines, spermine and thermospermine, to spermidine

  • Taibo Liu
  • Dong Wook Kim
  • Masaru Niitsu
  • Thomas Berberich
  • Tomonobu Kusano
Original Paper

Abstract

Key message

Oryza sativa polyamine oxidase 1 back-converts spermine (or thermospermine) to spermidine. Considering the previous work, major path of polyamine catabolism in rice plant is suggestive to be back-conversion but not terminal catabolism.

Abstract

Rice (Oryza sativa) contains seven genes encoding polyamine oxidases (PAOs), termed OsPAO1 to OsPAO7, based on their chromosomal number and gene ID number. We previously showed that three of these members, OsPAO3, OsPAO4 and OsPAO5, are abundantly expressed, that their products localize to peroxisomes and that they catalyze the polyamine back-conversion reaction. Here, we have focused on OsPAO1. The OsPAO1 gene product shares a high level of identity with those of Arabidopsis PAO5 and Brassica juncea PAO. Expression of OsPAO1 appears to be quite low under physiological conditions, but is markedly induced in rice roots by spermine (Spm) or T-Spm treatment. Consistent with the above finding, the recombinant OsPAO1 prefers T-Spm as a substrate at pH 6.0 and Spm at pH 8.5 and, in both cases, back-converts these tetraamines to spermidine, but not to putrescine. OsPAO1 localizes to the cytoplasm of onion epidermal cells. Differing in subcellular localization, four out of seven rice PAOs, OsPAO1, OsPAO3, OsPAO4 and OsPAO5, catalyze back-conversion reactions of PAs. Based on the results, we discuss the catabolic path(s) of PAs in rice plant.

Keywords

Back-conversion Oryza sativa OsPAO1 Polyamine Polyamine oxidase Thermospermine 

Supplementary material

299_2013_1518_MOESM1_ESM.docx (4.9 mb)
Supplementary material 1 (DOCX 5053 kb)

References

  1. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249PubMedCrossRefGoogle Scholar
  2. Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A (2010) Plant amine oxidases “on the move”: an update. Plant Physiol Biochem 48:560–564PubMedCrossRefGoogle Scholar
  3. Casero RA Jr, Pegg AE (1993) Spermidine/spermine N1-acetyltransferase—the turning point in polyamine metabolism. FASEB J 7:653–661PubMedGoogle Scholar
  4. Cervelli M, Cona A, Angelini R, Polticelli F, Federico R, Mariottini P (2001) A barley polyamine oxidase isoform with distinct structural features and subcellular localization. Eur J Biochem 268:3816–3830PubMedCrossRefGoogle Scholar
  5. Cervelli M, Polticelli F, Federico R, Mariottini P (2003) Heterologous expression and characterization of mouse spermine oxidase. J Biol Chem 278:5271–5276PubMedCrossRefGoogle Scholar
  6. Cervelli M, Caro OD, Penta AD, Angelini R, Federico R, Vitale A, Mariottini P (2004) A novel C-terminal sequence from barley polyamine oxidase is a vacuolar sorting signal. Plant J 40:410–418PubMedCrossRefGoogle Scholar
  7. Cervelli M, Bianchi M, Cona A, Crosatti C, Stanca M, Angelini R, Federico R, Mariottini P (2006) Barley polyamine oxidase isoforms 1 and 2, a peculiar case of gene duplication. FEBS J 273:3990–4002PubMedCrossRefGoogle Scholar
  8. Chen J, Acton TB, Basu SK, Montelion GT, Inoue M (2002) Enhancement of the solubility of proteins overexpressed in Escherichia coli by heat shock. J Mol Microbiol Biotechnol 4:519–524PubMedGoogle Scholar
  9. Cohen SS (1998) A guide to the polyamines. Oxford University Press, OxfordGoogle Scholar
  10. Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88PubMedCrossRefGoogle Scholar
  11. Federico R, Cona A, Angelini R, Schininà ME, Giartosio A (1990) Characterization of maize polyamine oxidase. Phytochemistry 29:2411–2414PubMedCrossRefGoogle Scholar
  12. Fincato P, Moschou PN, Spedaletti V, Tavazza R, Angelini R, Federico R, Roubelakis-Angelakis KA, Tavladoraki P (2011) Functional diversity inside the Arabidopsis polyamine oxidase gene family. J Exp Bot 62:1155–1168PubMedCrossRefGoogle Scholar
  13. Fincato P, Moschou PN, Ahou A, Angelini R, Roubelakis-Angelakis KA, Federico R, Tavladoraki P (2012) The members of Arabidopsis thaliana PAO gene family exhibit distinct tissue- and organ-specific expression pattern during seedling growth and flower development. Amino Acids 42:831–841PubMedCrossRefGoogle Scholar
  14. Fuse T, Sasaki T, Yano M (2001) Ti-plasmid vectors useful for functional analysis of rice genes. Plant Biotechnol 18:219–222CrossRefGoogle Scholar
  15. Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546PubMedCrossRefGoogle Scholar
  16. Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301PubMedCentralPubMedGoogle Scholar
  17. Kakehi J, Kuwashiro Y, Motose H, Igarashi K, Takahashi T (2010) Norspermine substitutes for thermospermine in the control of stem elongation in Arabidopsis thaliana. FEBS Lett 584:3042–3046PubMedCrossRefGoogle Scholar
  18. Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282PubMedCrossRefGoogle Scholar
  19. Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings Bioinform 9:299–306CrossRefGoogle Scholar
  20. Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381PubMedCrossRefGoogle Scholar
  21. Lim TS, Chitra TR, Han P, Pua EC, Yu H (2006) Cloning and characterization of Arabidopsis and Brassica juncea flavin-containing amine oxidases. J Exp Bot 57:4155–4169PubMedCrossRefGoogle Scholar
  22. Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413PubMedCrossRefGoogle Scholar
  23. Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back- conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857PubMedCentralPubMedCrossRefGoogle Scholar
  24. Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot 63:5003–5015PubMedCrossRefGoogle Scholar
  25. Naka Y, Watanabe K, Sagor GHM, Niitsu M, Pillai A, Kusano T, Takahashi Y (2010) Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol Biochem 48:527–533PubMedCrossRefGoogle Scholar
  26. Niitsu M, Samejima K (1986) Syntheses of a series of linear pentaamines with three and four methylene chain intervals. Chem Pharm Bull 34:1032–1038CrossRefGoogle Scholar
  27. Ono Y, Kim DW, Watanabe K, Sasaki A, Niitsu M, Berberich T, Kusano T, Takahashi Y (2012) Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyzed polyamine back conversion. Amino Acids 42:867–876PubMedCrossRefGoogle Scholar
  28. Samejima K, Takeda M, Kawase M, Okada M, Kyogoku Y (1984) Syntheses of 15N-enriched polyamines. Chem Pharm Bull 32:3428–3435PubMedCrossRefGoogle Scholar
  29. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790PubMedCrossRefGoogle Scholar
  30. Takahashi Y, Cong R, Sagor GHM, Niitsu M, Berberich T, Kusano T (2010) Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep 29:955–965PubMedCrossRefGoogle Scholar
  31. Takano A, Kakehi JI, Takahashi T (2012) Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol 53:606–616PubMedCrossRefGoogle Scholar
  32. Tavladoraki P, Shinina ME, Cecconi F, Di Agostino S, Manera F, Rea G, Mariottini P, Federico R, Angelini R (1998) Maize polyamine oxidase: primary structure from protein and cDNA sequencing. FEBS Lett 426:62–66PubMedCrossRefGoogle Scholar
  33. Tavladoraki P, Rossi MN, Saccuti G, Perez-Amador MA, Polticelli F, Angelini R, Federico R (2006) Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol 141:1519–1532PubMedCentralPubMedCrossRefGoogle Scholar
  34. Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976PubMedCrossRefGoogle Scholar
  35. Vujcic S, Diegelman P, Bacchi CJ, Kramer DL, Porter CW (2002) Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem J 367:665–675PubMedCrossRefGoogle Scholar
  36. Wang Y, Devereux W, Woster PM, Stewart TM, Hacker A, Casero RA Jr (2001) Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 61:5370–5373PubMedGoogle Scholar
  37. Zhu XJ, Thalor SK, Takahashi Y, Berberich T, Kusano T (2012) An inhibitory effect of the sequence-conserved upstream open reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant, Cell Environ 35:2014–2030CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Taibo Liu
    • 1
  • Dong Wook Kim
    • 1
  • Masaru Niitsu
    • 2
  • Thomas Berberich
    • 3
  • Tomonobu Kusano
    • 1
  1. 1.Graduate School of Life SciencesTohoku UniversitySendaiJapan
  2. 2.Faculty of Pharmaceutical SciencesJosai UniversitySakadoJapan
  3. 3.Biodiversity and Climate Research Center, Laboratory CentreFrankfurt am MainGermany

Personalised recommendations