Skip to main content

Optimizing the transient Fast Agro-mediated Seedling Transformation (FAST) method in Catharanthus roseus seedlings


Key message

An Agro-mediated transformation method has been adapted in Catharanthus roseus seedlings for transient overexpression. Our results suggest that Agro-mediated methods may induce defense-related genes, which should be considered in its application.


The Fast Agro-mediated Seedling Transformation (FAST) method, which involves the co-cultivation and transient transformation of young seedlings with Agrobacterium, was adapted and optimized in Catharanthus roseus. We investigated the optimal conditions for Gus expression by varying the Agrobacterium density (OD600 = 0.29 and 0.50), A. rhizogenes strain (15834 and R1000), and co-cultivation time in liquid (2, 12, or 24 h) followed by incubation time on solid media (1 or 2 days). Transformation efficiency was assessed quantitatively in terms of average GUS intensity per cotyledon surface area and percentage of cotyledons transformed. GUS staining was observed in 100 % of cotyledons co-cultivated with A. rhizogenes (OD600 = 0.50) co-transformed with the Mas promoter-driven Gus and pSoup helper plasmids, in the presence of 0.01 % v/v Silwet L-77 for 24 h in liquid followed by 2-days on solid media. In addition, we observed that co-cultivation with Agrobacterium strongly induced Zct1 and Orca3, two transcription factors known to regulate defense-related alkaloid biosynthesis in C. roseus. Homologous transcription factors regulate defense responses in many plant species. Therefore, possible induction of defense-related genes by Agro-mediated transformation should be a consideration in experimental design.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  • Aerts RJ, Verpoorte R (1992) The influence of tryptophan and tryptamine feeding and light on alkaloid biosynthesis in Cinchona seedlings. Planta Med 58(2):150–152. doi:10.1055/s-2006-961417

    CAS  PubMed  Article  Google Scholar 

  • Aerts RJ, Gisi D, De Carolis E, De Luca V, Baumann TW (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5(5):635–643

    CAS  Article  Google Scholar 

  • Chen X, Equi R, Baxter H, Berk K, Han J, Agarwal S, Zale J (2010) A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnol Biofuels 3(1):9. doi:10.1186/1754-6834-3-9

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508(2):215–220. doi:S0014-5793(01)03045-9

    CAS  PubMed  Article  Google Scholar 

  • Crane C, Wright E, Dixon R, Wang Z-Y (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes transformed hairy roots. Planta 223(6):1344–1354. doi:10.1007/s00425-006-0268-2

    CAS  PubMed  Article  Google Scholar 

  • De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill J, Goossens A (2011) APETALA2/ETHYLENE RESPONSE FACTOR and basic helix–loop–helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J 66:1053–1065

    Google Scholar 

  • De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inze D, Goossens A, Hilson P (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44(6):1065–1076. doi:10.1111/j.1365-313X.2005.02586.x

    PubMed  Article  Google Scholar 

  • Di Fiore S, Hoppmann V, Fischer R, Schillberg S (2004) Transient gene expression of recombinant terpenoid indole alkaloid enzymes in Catharanthus roseus leaves. Plant Mol Biol Rep 22(1):15–22. doi:10.1007/bf02773344

    Article  Google Scholar 

  • Farrell LB, Beachy RN (1990) Manipulation of β-glucuronidase for use as a reporter in vacuolar targeting studies. Plant Mol Biol 15(6):821–825

    CAS  PubMed  Article  Google Scholar 

  • Goklany S, Loring RH, Glick J, Lee-Parsons CWT (2009) Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding. Biotechnol Prog 25(5):1289–1296

    PubMed  Article  Google Scholar 

  • Guevara-Garcia A, Mosqueda-Cano G, Arguello-Astorga G, Simpson J, Herrera-Estrella L (1993) Tissue-specific and wound-inducible pattern of expression of the mannopine synthase promoter is determined by the interaction between the positive and negative cis-regulatory elements. Plant J 4(3):495–505

    CAS  PubMed  Article  Google Scholar 

  • Jefferson RA (1989) The GUS reporter gene system. Nature 342(6251):837–838

    CAS  PubMed  Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    CAS  PubMed  Google Scholar 

  • Kazan K (2006) Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends Plant Sci 11(3):109–112. doi:10.1016/j.tplants.2006.01.004

    CAS  PubMed  Article  Google Scholar 

  • Langridge W, Fitzgerald K, Koncz C, Schell J, Szalay A (1989) Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Dev Biol 86:3219–3223

    CAS  Google Scholar 

  • Lee-Parsons CWT, Erturk S, Tengtrakool J (2004) Enhancement of ajmalicine production in Catharanthus roseus cell cultures with methyl jasmonate is dependent on timing and dosage of elicitation. Biotechnol Lett 26(20):1595–1599

    CAS  PubMed  Article  Google Scholar 

  • Li J-F, Park E, von Arnim A, Nebenfuhr A (2009) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5(1):6

    PubMed Central  PubMed  Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi:10.1006/meth 2001.1262

    CAS  PubMed  Article  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano J, Solano R (2002) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell Online 15(1):165–178. doi:10.1105/tpc.007468

    Article  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible W-R, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139(2):949–959

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Memelink J, Gantet P (2007) Transcription factors involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Phytochem Rev 6(2–3):353–362

    CAS  Article  Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    CAS  PubMed  Article  Google Scholar 

  • Menke FLH, Champion A, Kijne JW, Memelink J (1999a) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18(16):4455–4463

    CAS  PubMed  Article  Google Scholar 

  • Menke FLH, Parchmann S, Mueller MJ, Kijne JW, Memelink J (1999b) Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol 119:1289–1296

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Pauw B, Hilliou FAO, Martin VS, Chatel G, de Wolf CJF, Champion A, Pre M, van Duijn B, Kijne JW, van der Fits L, Memelink J (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279(51):52940–52948

    CAS  PubMed  Article  Google Scholar 

  • Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147(3):1347–1357. doi:10.1104/pp.108.117523

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Rico A, Bennett MH, Forcat S, Huang WE, Preston GM (2010) Agroinfiltration reduces ABA levels and suppresses Pseudomonas syringae-elicited salicylic acid production in Nicotiana tabacum. PLoS ONE 5(1):e8977. doi:10.1371/journal.pone.0008977

    PubMed Central  PubMed  Article  Google Scholar 

  • Slater A, Scott NW, Fowler MR (2008) Plant Biotechnology: the genetic manipulation of plants, 2nd edn. Oxford University Press, Oxford

  • van der Fits L, Memelink J (2000) ORCA3, a Jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289(5477):295–297

    PubMed  Article  Google Scholar 

  • van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25(1):43–53

    PubMed  Article  Google Scholar 

  • van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11(5):607–628

    Article  Google Scholar 

  • van der Meer IM (2006) Agrobacterium-mediated transformation of petunia leaf discs. Methods in Molecular Biology. In: Loyola-Vargas V, Vazquez-Flota F (eds) Plant Cell Culture Protocols vol 318, 2nd edn. Humana Press Inc., Totowa

  • Zhang H, Memelink J (2009) Regulation of secondary metabolism by jasmonate hormones. In: Lanzotti AEOAV (ed) Plant-derived natural products. Springer Science + Business Media, LLC. doi:10.1007/978-0-387-85498-4_8

Download references


This work was supported by the National Science Foundation (NSF-CAREER, Grant No. BES-0134511; NSF-CBET Grant No. 1033889). We would like to thank Dr. Jian-Feng Li and Dr. Andreas Nebenführ (University of Tennessee, Knoxville, Tennessee) for providing the pVKH-NLS-YFP-GUS plasmid and plasmid map and Dr. Hans-Joerg Jacobsen (Leibnitz University, Hannover, Germany) for providing the pGII0229TR-GUS-CP-LUC and pSoup plasmids.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Carolyn W. T. Lee-Parsons.

Additional information

Communicated by K. Kamo.

J. Weaver and S. Goklany contributed equally.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weaver, J., Goklany, S., Rizvi, N. et al. Optimizing the transient Fast Agro-mediated Seedling Transformation (FAST) method in Catharanthus roseus seedlings. Plant Cell Rep 33, 89–97 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Catharanthus roseus
  • Agrobacterium-mediated transient transformation
  • Orca APETALA2/ETHYLENE Response Factor (AP2/ERF) family
  • Zct zinc finger protein family
  • Transcription factor
  • Plant defense response