Skip to main content
Log in

Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Nitric oxide improves copper tolerance via modulation of superoxide and hydrogen peroxide levels. This reflects the necessity of a well-coordinated interplay between NO and ROS during stress tolerance.

Abstract

Copper (Cu) excess causes toxicity and one probable consequence of this is the disturbance of cell redox state maintenance, inter alia, by reactive oxygen- (ROS) and nitrogen species (RNS). The objective of this paper was to examine the role of nitric oxide (NO) in Cu stress tolerance and its relationship with ROS in Arabidopsis. In agar-grown seedlings, concentration-dependent Cu accumulation was observed. The 5 μM Cu resulted in reduced cell viability in the NO overproducing nox1 and gsnor1-3 root tips compared to the wild-type (WT). In contrast, 25 and 50 μM Cu caused higher viability in these mutants, while in the NO-lacking nia1nia2 lower viability was detected than in the WT. The exogenous NO donor enhanced cell viability and scavenging endogenous NO decreased it in Cu-exposed WT seedlings. Besides, SNP in nia1nia2 roots led to the improvement of viability. The ascorbic acid-deficient mutants (vtc2-1, vtc2-3) possessing slightly elevated ROS levels proved to be Cu sensitive, while miox4 showing decreased ROS production was more tolerant to Cu than the WT. In nox1 and gsnor1-3, Cu did not induce superoxide formation, and H2O2 accumulation occurred only in the case of NO deficiency. Based on these, under mild stress NO intensifies cell injury, while in the case of severe Cu excess it contributes to better viability. ROS were found to be responsible for aggravation of Cu-induced damage. NO alleviates acute Cu stress via modulation of O ·−2 and H2O2 levels reflecting the necessity of a well-coordinated interplay between NO and ROS during stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alford SR (2009) Molecular characterization of two myo-inositol oxygenases in Arabidopsis thaliana. Dissertation, Virginia Polytechnic Institute and State University

  • Astier J, Kulik A, Koen E, Besson-Bard A, Bourque S, Jeandroz S, Lamotte O, Wendehenne D et al (2012) Protein S-nitrosylation: what’s going on in plants? Free Rad Biol Med 53:1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Barth C, Gouzd ZA, Steele HA, Imperio RM et al (2010) A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis. J Exp Bot 61:379–394

    Article  PubMed  CAS  Google Scholar 

  • Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M et al (2009) Copper homeostasis. New Phytol 182:799–816

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL (2001) Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ 24:383–394

    Article  CAS  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL et al (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856

    PubMed  CAS  Google Scholar 

  • Cui XM, Zhang YK, Wu XB, Liu CS et al (2010) The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants. Plant Soil Environ 56:274–281

    CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C et al (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci 98:13454–13459

    Article  PubMed  CAS  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N et al (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  PubMed  CAS  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral Nutrition of Plants: Principles and Perspectives. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Feechan A, Kwon E, Yun B-W, Wang Y, Pallas JA, Loake GJ et al (2005) A central role for S-nitrosothiols in plant disease resistance. PNAS 102:8054–8059

    Article  PubMed  CAS  Google Scholar 

  • Gouvêa CMCP, Souza JF, Magalhães CAN, Martins IS et al (1997) NO–releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187

    Article  Google Scholar 

  • He Y, Tang R-H, Hao Y (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  PubMed  CAS  Google Scholar 

  • Hu K-D, Hu L-Y, Li Y-H, Zhang F-Q, Zhang H et al (2007) Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul 53:173–1831

    Article  CAS  Google Scholar 

  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS et al (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    Article  PubMed  CAS  Google Scholar 

  • Kopyra M, Gwózdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E et al (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  PubMed  CAS  Google Scholar 

  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierlinga E et al (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20:786–802

    Article  PubMed  CAS  Google Scholar 

  • Lehotai N, Pető A, Bajkán Sz, Erdei L, Tari I, Kolbert Zs et al (2011) In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol Plant 33:2199–2207

    Article  CAS  Google Scholar 

  • Lehotai N, Kolbert Zs, Pető A, Feigl G, Ördög A, Kumar D, Tari I, Erdei L et al (2012) Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L. J Exp Bot 63:5677–5687

    Article  PubMed  CAS  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N et al (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682

    Article  PubMed  CAS  Google Scholar 

  • Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J Plant Physiol 148:258–263

    Article  CAS  Google Scholar 

  • Lidon FC, Henriques FS (1993) Effects of copper toxicity on growth and the uptake and translocation of metals in rice plants. J Plant Nutr 16:1449–1464

    Article  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  PubMed  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL et al (2004) Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  PubMed  CAS  Google Scholar 

  • Lozano-Juste J, Léon J (2010) Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol 152:891–903

    Article  PubMed  CAS  Google Scholar 

  • Modolo LV, Augusto O, Almeida IMG, Pinto-Maglio CAF, Oliveira HC, Seligman K, Salgado I et al (2006) Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Sci 171:34–40

    Article  CAS  Google Scholar 

  • Molassiotis A, Fotopoulos V (2011) Oxidative and nitrosative signaling in plants: two branches in the same tree? Plant Signal Behav 6:210–214

    Article  PubMed  CAS  Google Scholar 

  • Müller-Moulé P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol 134:1163–1172

    Article  PubMed  Google Scholar 

  • Murphy A, Taiz L (1995) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis ecotypic variation and copper-sensitive mutants. Plant Physiol 108:29–38

    PubMed  CAS  Google Scholar 

  • Negi S, Santisree P, Kharshiing EV, Sharma R et al (2010) Inhibition of the ubiquitin–proteasome pathway alters cellular levels of nitric oxide in tomato seedlings. Mol Plant 3:854–869

    Article  PubMed  CAS  Google Scholar 

  • Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A et al (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ Exp Bot 83:53–61

    Article  CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L et al (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  PubMed  CAS  Google Scholar 

  • Pető A, Lehotai N, Lozano-Juste J, León J, Tari I, Erdei L, Kolbert Zs et al (2011) Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Ann Bot 108:449–457

    Article  PubMed  Google Scholar 

  • Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M et al (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Microbe Interact 16:1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Potters G, Horemans N, Jansen MAK (2010) The cellular redox state in plant stress biology: a charging concept. Plant Physiol Biochem 48:292–300

    Article  PubMed  CAS  Google Scholar 

  • Reichman SM (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. Australian Minerals & Energy Environment foundation, p 22

  • Rustérucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC et al (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    Article  PubMed  Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Phil Trans R Soc Lond B 355:1455–1464

    Article  CAS  Google Scholar 

  • Taylor GJ, Foy CD (1985) Differential uptake and toxicity of ionic and chelated copper in Triticum aestivum. Can J Bot 63:1271–1275

    Article  CAS  Google Scholar 

  • Tewari RK, Hahn E-J, Paek K-Y (2008) Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep 27:171–181

    Article  PubMed  CAS  Google Scholar 

  • Vandelle E, Delledonne M (2011) Peroxynitrite formation and function in plants. Plant Sci 181:534–539

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X et al (2010) Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 167:1298–1306

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JQ, Crawford NM (1993) Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Mol Gen Genet 239:289–297

    PubMed  CAS  Google Scholar 

  • Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C et al (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fu G, Tao L, Zhu C et al (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497:13–20

    Article  PubMed  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Func Plant Biol 36:409–430

    Article  CAS  Google Scholar 

  • Yun B-W, Feechan A, Yin M, Saidi NBB, Le Bihan T, Yu M, Moore JW, Kang J-G, Kwon E, Spoel SH, Pallas JA, Loake GJ et al (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  PubMed  CAS  Google Scholar 

  • Zhao M-G, Chen L, Zhang L-L, Zhang W-H et al (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. G. F. E. Scherer (University of Hannover, Germany) for supplying the NR double mutant nia1nia2 seeds and Dr. Christian Lindermayr (Helmholtz Zentrum München, Germany) for supplying the gsnor1-3 seeds. Nox1 seeds were kindly provided by Professor Yikun He (Capital Normal University, Beijing, China). We also thank Dr. Laura Zsigmond (University of Szeged, Hungary) for the kind gift of vtc2-1, vtc2-3 and miox4 seeds, respectively. The authors wish to thank “Scientia Amabilis Foundation for Hungarian Plant Physiology” for the financial support. This work was supported by the Hungarian Scientific Research Fund (grant no. OTKA PD100504). We acknowledge HURO/0901/147/2.2.2 SZETISA1. Project for the ICP-MS instrumental background. This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program – Elaborating and operating an inland student and researcher personal support system”. The project was subsidized by the European Union and co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Kolbert.

Additional information

Communicated by Q. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pető, A., Lehotai, N., Feigl, G. et al. Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis . Plant Cell Rep 32, 1913–1923 (2013). https://doi.org/10.1007/s00299-013-1503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1503-5

Keywords

Navigation