Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco

Abstract

Key message

The K-domain of a blueberry-derived SOC1 -like gene promotes flowering in tobacco without negatively impacting yield, demonstrating potential for manipulation of flowering time in horticultural crops.

Abstract

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and SOC1-likes, belonging to the MIKCc (type II) MADS-box gene subfamily, are major floral activators and integrators of plant flowering. Both MADS-domains and K (Keratin)-domains are highly conserved in MIKCc-type MADS proteins. While there are many reports on overexpression of intact MIKCc-type MADS-box genes, few studies have been conducted to investigate the effects of the K-domains. In this report, a 474-bp K-domain of Vaccinium SOC1-like (VcSOC1-K) was cloned from the cDNA library of the northern highbush blueberry (Vaccinium corymbosum L.). Functional analysis of the VcSOC1-K was conducted by ectopically expressing of 35S:VcSOC1-K in tobacco. Reverse transcription PCR confirmed expression of the VcSOC1-K in T0 plants. Phenotypically, T1 transgenic plants (10 T1 plants/event) flowered sooner after seeding, and were shorter with fewer leaves at the time of flowering, than nontransgenic plants; but seed pod production of transgenic plants was not significantly affected. These results demonstrate that overexpression of the K-domain of a MIKCc-type MADS-box gene alone is sufficient to promote early flowering and more importantly without affecting seed production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 6:1001–1013

    Article  Google Scholar 

  2. Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. Bmc Genomics 8:242

    PubMed  Article  Google Scholar 

  3. Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24:591–599

    PubMed  Article  CAS  Google Scholar 

  4. Dhanaraj AL, Slovin JP, Rowland LJ (2004) Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci 166:863–872

    Article  CAS  Google Scholar 

  5. Diaz-Riquelme J, Lijavetzky D, Martinez-Zapater JM, Carmona MJ (2009) Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiol 149:354–369

    PubMed  Article  CAS  Google Scholar 

  6. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  7. Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RGH (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16:1490–1505

    PubMed  Article  CAS  Google Scholar 

  8. Gramzow L, Theissen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11:214

    PubMed  Article  Google Scholar 

  9. Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot-London 103:1165–1172

    Article  CAS  Google Scholar 

  10. Heijmans K, Morel P, Vandenbussche M (2012) MADS-box genes and floral development: the dark side. J Exp Bot 63:5397–5404

    PubMed  Article  CAS  Google Scholar 

  11. Henschel K, Kofuji R, Hasebe M, Saedler H, Munster T, Theissen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 19:801–814

    PubMed  Article  CAS  Google Scholar 

  12. Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lorz H, Dresselhaus T (2001) The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiol 127:33–45

    PubMed  Article  CAS  Google Scholar 

  13. Hileman LC, Sundstrom JF, Litt A, Chen MQ, Shumba T, Irish VF (2006) Molecular and phylogenetic analyses of the MADS-Box gene family in tomato. Mol Biol Evol 23:2245–2258

    PubMed  Article  CAS  Google Scholar 

  14. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene-transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  15. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  16. Hu LF, Liu SQ (2012) Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55:245–256

    PubMed  Article  CAS  Google Scholar 

  17. Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183–198

    PubMed  Article  CAS  Google Scholar 

  18. Kwantes M, Liebsch D, Verelst W (2012) How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes. Mol Biol Evol 29:293–302

    PubMed  Article  CAS  Google Scholar 

  19. Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    PubMed  Article  CAS  Google Scholar 

  20. Lee SY, Kim J, Han JJ, Han MJ, An GH (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OFOVEREXPRESSION OFCO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764

    PubMed  Article  CAS  Google Scholar 

  21. Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55:832–843

    PubMed  Article  CAS  Google Scholar 

  22. Leseberg CH, Li AL, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    PubMed  Article  CAS  Google Scholar 

  23. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    PubMed  CAS  Google Scholar 

  24. Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    PubMed  Article  CAS  Google Scholar 

  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  26. Nakano Y, Kawashima H, Kinoshita T, Yoshikawa H, Hisamatsu T (2011) Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression. Physiol Plantarum 141:383–393

    Article  CAS  Google Scholar 

  27. Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    PubMed  Article  CAS  Google Scholar 

  28. Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35:1742–1755

    PubMed  Article  CAS  Google Scholar 

  29. Ruokolainen S, Ng YP, Albert VA, Elomaa P, Teeri TH (2011) Over-expression of the Gerbera hybrida At-SOC1-like1 gene Gh-SOC1 leads to floral organ identity deterioration. Ann Bot-Lond 107:1491–1499

    Article  CAS  Google Scholar 

  30. Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant, Cell Environ 32:1412–1427

    Article  CAS  Google Scholar 

  31. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    PubMed  Article  CAS  Google Scholar 

  32. Shitsukawa N, Ikari C, Mitsuya T, Sakiyama T, Ishikawa A, Takumi S, Murai K (2007) Wheat SOC1 functions independently of WAP1/VRN1, an integrator of vernalization and photoperiod flowering promotion pathways. Physiol Plantarum 130:627–636

    Article  CAS  Google Scholar 

  33. Smaczniak C, Immink RGH, Angenent GC, Kaufmann K (2012a) Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:3081–3098

    PubMed  Article  CAS  Google Scholar 

  34. Smaczniak C, Immink RGH, Muino JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu SJ, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K (2012b) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. P Natl Acad Sci USA 109:1560–1565

    Article  CAS  Google Scholar 

  35. Smykal P, Gennen J, De Bodt S, Ranganath V, Melzer S (2007) Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches. Plant Mol Biol 65:233–242

    PubMed  Article  CAS  Google Scholar 

  36. Sreekantan L, Thomas MR (2006) VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Funct Plant Biol 33:1129–1139

    Article  CAS  Google Scholar 

  37. Tadege M, Sheldon CC, Helliwell CA, Upadhyaya NM, Dennis ES, Peacock WJ (2003) Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnol J 1:361–369

    PubMed  Article  CAS  Google Scholar 

  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed  Article  CAS  Google Scholar 

  39. Tan FC, Swain SM (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plantarum 131:481–495

    Article  CAS  Google Scholar 

  40. Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    PubMed  Article  CAS  Google Scholar 

  41. Thompson JD, Higgins DG, Gibson TJ, Clustal W (1994) Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Article  CAS  Google Scholar 

  42. Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26:519–527

    PubMed  Article  CAS  Google Scholar 

  43. Zhong XF, Dai X, Xv JH, Wu HY, Liu B, Li HY (2012) Cloning and expression analysis of GmGAL1, SOC1 homolog gene in soybean. Mol Biol Rep 39:6967–6974

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guo-qing Song.

Additional information

Communicated by B. Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, Gq., Walworth, A., Zhao, D. et al. Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco. Plant Cell Rep 32, 1819–1826 (2013). https://doi.org/10.1007/s00299-013-1495-1

Download citation

Keywords

  • Floral initiation
  • Flowering time
  • MIKC-type MADS-box gene
  • SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1)
  • Vaccinium corymbosum L.
  • Woody plant