The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry

Abstract

Key message

The blueberry FLOWERING LOCUS T ( FT )-like gene ( VcFT ) cloned from the cDNA of a tetraploid, northern highbush blueberry ( Vaccinium corymbosum L.) is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

Abstract

Blueberry is a woody perennial bush with a longer juvenile period than annual crops, requiring vernalization to flower normally. Few studies have been reported on the molecular mechanism of flowering in blueberry or other woody plants. Because FLOWERING LOCUS T (FT) from Arabidopsis thaliana plays a multifaceted role in generating mobile molecular signals to regulate plant flowering time, isolation and functional analysis of the blueberry (Vaccinium corymbosum L.) FT-like gene (VcFT) will facilitate the elucidation of molecular mechanisms of flowering in woody plants. Based on EST sequences, a 525-bpVcFT was identified and cloned from the cDNA of a tetraploid, northern highbush blueberry cultivar, Bluecrop. Ectopic expression of 35S:VcFT in tobacco induced flowering an average of 28 days earlier than wild-type plants. Expression of the 35S:VcFT in the blueberry cultivar Aurora resulted in an extremely early flowering phenotype, which flowered not only during in vitro culture, a growth stage when nontransgenic shoots had not yet flowered, but also in 6–10-week old, soil-grown transgenic plants, in contrast to the fact that at least 1 year and 800 chilling hours are required for the appearance of the first flower of both nontransgenic ‘Aurora’ and transgenic controls with the gusA. These results demonstrate that the VcFT is a functional floral activator and overexpression of the VcFT is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    PubMed  Article  CAS  Google Scholar 

  2. Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    PubMed  Article  CAS  Google Scholar 

  3. Barreto HG, Lazzari F, Sagio SA, Chalfun A, Paiva LV, Benedito VA (2012) In silico and quantitative analyses of the putative FLC-like homologue in coffee (Coffea arabica L.). Plant Mol Biol Rep 30:29–35

    Article  CAS  Google Scholar 

  4. Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660

    Article  CAS  Google Scholar 

  5. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    PubMed  Article  Google Scholar 

  6. Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24:591–599

    PubMed  Article  CAS  Google Scholar 

  7. Boss PK, Sreekantan L, Thomas MR (2006) A grapevine TFL1 homologue can delay flowering and alter floral development when overexpressed in heterologous species. Funct Plant Biol 33:31–41

    Article  CAS  Google Scholar 

  8. Carmona MJ, Calonje M, Martinez-Zapater JM (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63:637–650

    PubMed  Article  CAS  Google Scholar 

  9. Dhanaraj AL, Slovin JP, Rowland LJ (2004) Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci 166:863–872

    Article  CAS  Google Scholar 

  10. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  11. Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    PubMed  Article  CAS  Google Scholar 

  12. Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RGH (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16:1490–1505

    PubMed  Article  CAS  Google Scholar 

  13. Flachowsky H, Hattasch C, Hofer M, Peil A, Hanke MV (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263

    PubMed  Article  CAS  Google Scholar 

  14. Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, Cohen Y, Samach A, Chevreau E, Le Roux PM, Patocchi A, Flaishman MA (2012) Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235:1239–1251

    PubMed  Article  CAS  Google Scholar 

  15. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    PubMed  Article  CAS  Google Scholar 

  16. Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172

    PubMed  Article  CAS  Google Scholar 

  17. Hattasch C, Flachowsky H, Kapturska D, Hanke MV (2008) Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiol 28:1459–1466

    PubMed  Article  Google Scholar 

  18. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene-transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  19. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  20. Hsu CY, Liu YX, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

    PubMed  Article  CAS  Google Scholar 

  21. Hsu CY, Adams JP, Kim HJ, No K, Ma CP, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, dePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci USA 108:10756–10761

    PubMed  Article  CAS  Google Scholar 

  22. Imamura T, Nakatsuka T, Higuchi A, Nishihara M, Takahashi H (2011) The Gentian orthologs of the FT/TFL1 gene family control floral initiation in Gentiana. Plant Cell Physiol 52:1031–1041

    PubMed  Article  CAS  Google Scholar 

  23. Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    PubMed  Article  CAS  Google Scholar 

  24. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    PubMed  Article  CAS  Google Scholar 

  25. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    PubMed  Article  CAS  Google Scholar 

  26. Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus domestica Borkh.). Plant Cell Physiol 51:561–575

    PubMed  Article  CAS  Google Scholar 

  27. Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    PubMed  Article  CAS  Google Scholar 

  28. Ma C, Wang Y, Wang L, Chen S, Li H (2011) Identification of a sugar beet BvM14-MADS box gene through differential gene expression analysis of monosomic addition line M14. J Plant Physiol 168:1980–1986

    PubMed  Article  CAS  Google Scholar 

  29. Mayfield D, Chen ZJ, Pires JC (2011) Epigenetic regulation of flowering time in polyploids. Curr Opin Plant Biol 14:174–178

    PubMed  Article  CAS  Google Scholar 

  30. Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80

    PubMed  Article  CAS  Google Scholar 

  31. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell Online 11:949–956

    CAS  Google Scholar 

  32. Mimida N, Kidou S-I, Iwanami H, Moriya S, Abe K, Voogd C, Varkonyi-Gasic E, Kotoda N (2011) Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development. Tree Physiol 31:555–566

    PubMed  Article  Google Scholar 

  33. Mohamed R, Wang C-T, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng X, Meilan R, Strauss SH, Brunner AM (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62:674–688

    PubMed  Article  CAS  Google Scholar 

  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  35. Nakano Y, Kawashima H, Kinoshita T, Yoshikawa H, Hisamatsu T (2011) Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression. Physiol Plant 141:383–393

    PubMed  Article  CAS  Google Scholar 

  36. Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M, Ikoma Y (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). J Exp Bot 58:3915–3927

    PubMed  Article  CAS  Google Scholar 

  37. Pillitteri LJ, Lovatt CJ, Walling LL (2004) Isolation and characterization of LEAFY and APETALA1 homologues from Citrus sinensis L. Osbeck ‘Washington’. J Am Soc Hortic Sci 129:846–856

    CAS  Google Scholar 

  38. Pin PANO (2012) The multifaceted roles of Flowering Locus T in plant development. Plant Cell Environ 35:1742–1755

    PubMed  Article  CAS  Google Scholar 

  39. Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400

    PubMed  Article  CAS  Google Scholar 

  40. Posé D, Yant L, Schmid M (2012) The end of innocence: flowering networks explode in complexity. Curr Opin Plant Biol 15:45–50

    PubMed  Article  Google Scholar 

  41. Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    PubMed  Article  CAS  Google Scholar 

  42. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    PubMed  Article  CAS  Google Scholar 

  43. Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283:233–241

    PubMed  Article  CAS  Google Scholar 

  44. Song G-Q, Sink KC (2004) Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.). Plant Cell Rep 23:475–484

    PubMed  Article  CAS  Google Scholar 

  45. Song G-Q, Sink KC (2006) Agrobacterium-mediated transformation of highbush blueberry (Vaccinium corymbosum L.) cultivars. In: Wang K (ed) Agrobacterium protocols: methods in molecular biology 344, 2nd edn. Humana Press, Totowa, pp 37–44

    Google Scholar 

  46. Sreekantan L, Thomas MR (2006) VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Funct Plant Biol 33:1129–1139

    Article  CAS  Google Scholar 

  47. Srinivasan C, Dardick C, Callahan A, Scorza R (2012) Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS ONE 7:e40715

    PubMed  Article  CAS  Google Scholar 

  48. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed  Article  CAS  Google Scholar 

  49. Tan FC, Swain SM (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plant 131:481–495

    PubMed  Article  CAS  Google Scholar 

  50. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Article  CAS  Google Scholar 

  51. Trankner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324

    PubMed  Article  Google Scholar 

  52. Trankner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2011) Note added in proof to: over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 233:217–218

    Article  Google Scholar 

  53. Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    PubMed  Article  CAS  Google Scholar 

  54. Walworth AE, Rowland LJ, Polashock JJ, Hancock JF, Song G-Q (2012) Overexpression of a blueberry-derived CBF enhances cold tolerance in a southern highbush blueberry cultivar. Mol Breed 30:1313–1323

    Article  CAS  Google Scholar 

  55. Wang RH, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, A-B C, Coupland G, Albani MC (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423–427

    PubMed  Article  CAS  Google Scholar 

  56. Wang R, Albani MC, Vincent C, Bergonzi S, Luan M, Bai Y, Kiefer C, Castillo R, Coupland G (2011) Aa TFL1 confers an age-dependent response to vernalization in perennial Arabis alpina. Plant Cell Online 23:1307–1321

    Article  CAS  Google Scholar 

  57. Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26:519–527

    PubMed  Article  CAS  Google Scholar 

  58. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    PubMed  Article  CAS  Google Scholar 

  59. Wilkie JD, Sedgley M, Olesen T (2008) Regulation of floral initiation in horticultural trees. J Exp Bot 59:3215–3228

    PubMed  Article  CAS  Google Scholar 

  60. Zeevaart JAD (2008) Leaf-produced floral signals. Curr Opin Plant Biol 11:541–547

    PubMed  Article  CAS  Google Scholar 

  61. Zhang JZ, Li ZM, Mei L, Yao JL, Hu CG (2009) PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta 229:847–859

    PubMed  Article  CAS  Google Scholar 

  62. Zhang HL, Harry DE, Ma C, Yuceer C, Hsu CY, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot 61:2549–2560

    PubMed  Article  CAS  Google Scholar 

  63. Zhang JZ, Ai XY, Sun LM, Zhang DL, Guo WW, Deng XX, Hu CG (2011) Molecular cloning and functional characterization of genes associated with flowering in citrus using an early-flowering trifoliate orange (Poncirus trifoliata L. Raf.) mutant. Plant Mol Biol 76:187–204

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Qian Ma for assisting with q-PCR analysis, Britton F. Hildebrandt and Michael Leasia for assisting with the data collection, and W. Vance Baird for his critical review of the manuscript. This research was partially supported by MSU Project GREEEN (Generating Research and Extension to Meet Economic and Environmental Needs).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guo-qing Song.

Additional information

Communicated by A. Dhingra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, Gq., Walworth, A., Zhao, D. et al. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Rep 32, 1759–1769 (2013). https://doi.org/10.1007/s00299-013-1489-z

Download citation

Keywords

  • Floral activator
  • Floral initiation
  • FLOWERING LOCUS T
  • Flowering time
  • Vaccinium corymbosum L.
  • Woody plant