Skip to main content
Log in

The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The blueberry FLOWERING LOCUS T ( FT )-like gene ( VcFT ) cloned from the cDNA of a tetraploid, northern highbush blueberry ( Vaccinium corymbosum L.) is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

Abstract

Blueberry is a woody perennial bush with a longer juvenile period than annual crops, requiring vernalization to flower normally. Few studies have been reported on the molecular mechanism of flowering in blueberry or other woody plants. Because FLOWERING LOCUS T (FT) from Arabidopsis thaliana plays a multifaceted role in generating mobile molecular signals to regulate plant flowering time, isolation and functional analysis of the blueberry (Vaccinium corymbosum L.) FT-like gene (VcFT) will facilitate the elucidation of molecular mechanisms of flowering in woody plants. Based on EST sequences, a 525-bpVcFT was identified and cloned from the cDNA of a tetraploid, northern highbush blueberry cultivar, Bluecrop. Ectopic expression of 35S:VcFT in tobacco induced flowering an average of 28 days earlier than wild-type plants. Expression of the 35S:VcFT in the blueberry cultivar Aurora resulted in an extremely early flowering phenotype, which flowered not only during in vitro culture, a growth stage when nontransgenic shoots had not yet flowered, but also in 6–10-week old, soil-grown transgenic plants, in contrast to the fact that at least 1 year and 800 chilling hours are required for the appearance of the first flower of both nontransgenic ‘Aurora’ and transgenic controls with the gusA. These results demonstrate that the VcFT is a functional floral activator and overexpression of the VcFT is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  PubMed  CAS  Google Scholar 

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    Article  PubMed  CAS  Google Scholar 

  • Barreto HG, Lazzari F, Sagio SA, Chalfun A, Paiva LV, Benedito VA (2012) In silico and quantitative analyses of the putative FLC-like homologue in coffee (Coffea arabica L.). Plant Mol Biol Rep 30:29–35

    Article  CAS  Google Scholar 

  • Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660

    Article  CAS  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24:591–599

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Sreekantan L, Thomas MR (2006) A grapevine TFL1 homologue can delay flowering and alter floral development when overexpressed in heterologous species. Funct Plant Biol 33:31–41

    Article  CAS  Google Scholar 

  • Carmona MJ, Calonje M, Martinez-Zapater JM (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63:637–650

    Article  PubMed  CAS  Google Scholar 

  • Dhanaraj AL, Slovin JP, Rowland LJ (2004) Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci 166:863–872

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    Article  PubMed  CAS  Google Scholar 

  • Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RGH (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16:1490–1505

    Article  PubMed  CAS  Google Scholar 

  • Flachowsky H, Hattasch C, Hofer M, Peil A, Hanke MV (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263

    Article  PubMed  CAS  Google Scholar 

  • Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, Cohen Y, Samach A, Chevreau E, Le Roux PM, Patocchi A, Flaishman MA (2012) Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235:1239–1251

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Hattasch C, Flachowsky H, Kapturska D, Hanke MV (2008) Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiol 28:1459–1466

    Article  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene-transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hsu CY, Liu YX, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

    Article  PubMed  CAS  Google Scholar 

  • Hsu CY, Adams JP, Kim HJ, No K, Ma CP, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, dePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci USA 108:10756–10761

    Article  PubMed  CAS  Google Scholar 

  • Imamura T, Nakatsuka T, Higuchi A, Nishihara M, Takahashi H (2011) The Gentian orthologs of the FT/TFL1 gene family control floral initiation in Gentiana. Plant Cell Physiol 52:1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  PubMed  CAS  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  PubMed  CAS  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus domestica Borkh.). Plant Cell Physiol 51:561–575

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Wang Y, Wang L, Chen S, Li H (2011) Identification of a sugar beet BvM14-MADS box gene through differential gene expression analysis of monosomic addition line M14. J Plant Physiol 168:1980–1986

    Article  PubMed  CAS  Google Scholar 

  • Mayfield D, Chen ZJ, Pires JC (2011) Epigenetic regulation of flowering time in polyploids. Curr Opin Plant Biol 14:174–178

    Article  PubMed  CAS  Google Scholar 

  • Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80

    Article  PubMed  CAS  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell Online 11:949–956

    CAS  Google Scholar 

  • Mimida N, Kidou S-I, Iwanami H, Moriya S, Abe K, Voogd C, Varkonyi-Gasic E, Kotoda N (2011) Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development. Tree Physiol 31:555–566

    Article  PubMed  Google Scholar 

  • Mohamed R, Wang C-T, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng X, Meilan R, Strauss SH, Brunner AM (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62:674–688

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Kawashima H, Kinoshita T, Yoshikawa H, Hisamatsu T (2011) Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression. Physiol Plant 141:383–393

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M, Ikoma Y (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). J Exp Bot 58:3915–3927

    Article  PubMed  CAS  Google Scholar 

  • Pillitteri LJ, Lovatt CJ, Walling LL (2004) Isolation and characterization of LEAFY and APETALA1 homologues from Citrus sinensis L. Osbeck ‘Washington’. J Am Soc Hortic Sci 129:846–856

    CAS  Google Scholar 

  • Pin PANO (2012) The multifaceted roles of Flowering Locus T in plant development. Plant Cell Environ 35:1742–1755

    Article  PubMed  CAS  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400

    Article  PubMed  CAS  Google Scholar 

  • Posé D, Yant L, Schmid M (2012) The end of innocence: flowering networks explode in complexity. Curr Opin Plant Biol 15:45–50

    Article  PubMed  Google Scholar 

  • Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283:233–241

    Article  PubMed  CAS  Google Scholar 

  • Song G-Q, Sink KC (2004) Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.). Plant Cell Rep 23:475–484

    Article  PubMed  CAS  Google Scholar 

  • Song G-Q, Sink KC (2006) Agrobacterium-mediated transformation of highbush blueberry (Vaccinium corymbosum L.) cultivars. In: Wang K (ed) Agrobacterium protocols: methods in molecular biology 344, 2nd edn. Humana Press, Totowa, pp 37–44

    Chapter  Google Scholar 

  • Sreekantan L, Thomas MR (2006) VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Funct Plant Biol 33:1129–1139

    Article  CAS  Google Scholar 

  • Srinivasan C, Dardick C, Callahan A, Scorza R (2012) Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS ONE 7:e40715

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tan FC, Swain SM (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plant 131:481–495

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Trankner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324

    Article  PubMed  Google Scholar 

  • Trankner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2011) Note added in proof to: over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 233:217–218

    Article  Google Scholar 

  • Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    Article  PubMed  CAS  Google Scholar 

  • Walworth AE, Rowland LJ, Polashock JJ, Hancock JF, Song G-Q (2012) Overexpression of a blueberry-derived CBF enhances cold tolerance in a southern highbush blueberry cultivar. Mol Breed 30:1313–1323

    Article  CAS  Google Scholar 

  • Wang RH, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, A-B C, Coupland G, Albani MC (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423–427

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Albani MC, Vincent C, Bergonzi S, Luan M, Bai Y, Kiefer C, Castillo R, Coupland G (2011) Aa TFL1 confers an age-dependent response to vernalization in perennial Arabis alpina. Plant Cell Online 23:1307–1321

    Article  CAS  Google Scholar 

  • Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26:519–527

    Article  PubMed  CAS  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Wilkie JD, Sedgley M, Olesen T (2008) Regulation of floral initiation in horticultural trees. J Exp Bot 59:3215–3228

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD (2008) Leaf-produced floral signals. Curr Opin Plant Biol 11:541–547

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ, Li ZM, Mei L, Yao JL, Hu CG (2009) PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta 229:847–859

    Article  PubMed  CAS  Google Scholar 

  • Zhang HL, Harry DE, Ma C, Yuceer C, Hsu CY, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot 61:2549–2560

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ, Ai XY, Sun LM, Zhang DL, Guo WW, Deng XX, Hu CG (2011) Molecular cloning and functional characterization of genes associated with flowering in citrus using an early-flowering trifoliate orange (Poncirus trifoliata L. Raf.) mutant. Plant Mol Biol 76:187–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Qian Ma for assisting with q-PCR analysis, Britton F. Hildebrandt and Michael Leasia for assisting with the data collection, and W. Vance Baird for his critical review of the manuscript. This research was partially supported by MSU Project GREEEN (Generating Research and Extension to Meet Economic and Environmental Needs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-qing Song.

Additional information

Communicated by A. Dhingra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Gq., Walworth, A., Zhao, D. et al. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Rep 32, 1759–1769 (2013). https://doi.org/10.1007/s00299-013-1489-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1489-z

Keywords

Navigation