Skip to main content
Log in

MAPs: cellular navigators for microtubule array orientations in Arabidopsis

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

An Erratum to this article was published on 22 August 2013

Abstract

Microtubules are subcellular nanotubes composed of α- and β-tubulin that arise from microtubule nucleation sites and are mainly composed of γ-tubulin complexes. Cell wall encased plant cells have evolved four distinct microtubule arrays that regulate cell division and expansion. Microtubule-associated proteins, the so called MAPs, construct, destruct and reorganize microtubule arrays thus regulating their spatiotemporal transitions during the cell cycle. By physically binding to microtubules and/or modulating their functions, MAPs control microtubule dynamic instability and/or interfilament cross talk. We survey the recent analyses of Arabidopsis MAPs such as MAP65, MOR1, CLASP, katanin, TON1, FASS, TRM, TAN1 and kinesins in terms of their effects on microtubule array organizations and plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akhmanova A, Hoogenraad CC, Drabek K, Stepanova T, Dortland B, Verkerk T, Vermeulen W, Burgering BM, De Zeeuw CI, Grosveld F, Galjart N (2001) Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104:923–935

    CAS  PubMed  Google Scholar 

  • Ambrose JC, Cyr R (2007) The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19:226–236. doi:10.1105/tpc.106.047613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ambrose JC, Wasteneys GO (2008) CLASP modulates microtubule–cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19:4730–4737. doi:10.1091/mbc.E08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ambrose JC, Li W, Marcus A, Ma H, Cyr R (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16:1584–1592. doi:10.1091/mbc.E04

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO (2007) The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant cell 19:2763–2775. doi:10.1105/tpc.107.053777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ambrose C, Allard JF, Cytrynbaum EN, Wasteneys GO (2011) A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat Commun 2:430. doi:10.1038/ncomms1444

    PubMed Central  PubMed  Google Scholar 

  • Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C, Amiour N, Parcy F, Pastuglia M, Bouchez D (2008) Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20:2146–2159. doi:10.1105/tpc.107.056812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bannigan A, Scheible WR, Lukowitz W, Fagerstrom C, Wadsworth P, Somerville C, Baskin TI (2007) A conserved role for kinesin-5 in plant mitosis. J Cell Sci 120(Pt 16):2819–2827. doi:10.1242/jcs.009506

    CAS  PubMed  Google Scholar 

  • Bao Y, Kost B, Chua NH (2001) Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157

    CAS  PubMed  Google Scholar 

  • Bichet A, Desnos T, Turner S, Grandjean O, Höfte H (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J 25:137–148

    Google Scholar 

  • Binarova P, Cenklova V, Prochazkova J, Doskocilova A, Volc J, Vrlik M, Bogre L (2006) Gamma-tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18(5):1199–1212. doi:10.1105/tpc.105.038364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bisgrove SR, Hable WE, Kropf DL (2004) +TIPs and microtubule regulation. The beginning of the plus end in plants. Plant Physiol 136:3855–3863. doi:10.1104/pp.104.051037.MT

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bisgrove SR, Lee YRJ, Liu B, Peters NT, Kropf DL (2008) The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant Cell 20:396–410. doi:10.1105/tpc.107.056846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bouquin T (2003) The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci 116:791–801. doi:10.1242/jcs.00274

    CAS  PubMed  Google Scholar 

  • Bu W, Su LK (2003) Characterization of functional domains of human EB1 family proteins. J Biol Chem 278(50):49721–49731. doi:10.1074/jbc.M306194200

    CAS  PubMed  Google Scholar 

  • Burk DH, Ye ZH (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 14(9):2145–2160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burk DH, Liu B, Zhong R, Morrison WH, Ye ZH (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13:807–827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buschmann H, Fabri CO, Hauptmann M, Hutzler P, Laux T, Lloyd CW, Schaffner AR (2004) Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol 14(16):1515–1521. doi:10.1016/j.cub.2004.08.033

    CAS  PubMed  Google Scholar 

  • Caillaud MC, Lecomte P, Jammes F, Quentin M, Pagnotta S, Andrio E, de Almeida Engler J, Marfaing N, Gounon P, Abad P, Favery B (2008) MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant cell 20:423–437. doi:10.1105/tpc.107.057422

    Google Scholar 

  • Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14(4):833–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carvalho P, Tirnauer JS, Pellman D (2003) Surfing on microtubule ends. Trends Cell Biol 13(5):229–237

    CAS  PubMed  Google Scholar 

  • Castellano MM, Sablowski R (2008) Phosducin-like protein 3 is required for microtubule-dependent steps of cell division but not for meristem growth in Arabidopsis. Plant Cell 20(4):969–981. doi:10.1105/tpc.107.057737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan J, Jensen CG, Jensen LC, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci USA 96(26):14931–14936

    CAS  PubMed  Google Scholar 

  • Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5(11):967–971. doi:10.1038/ncb1057

    CAS  PubMed  Google Scholar 

  • Chang-Jie J, Sonobe S (1993) Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein. J Cell Sci 105(Pt 4):891–901

    Google Scholar 

  • Chen C, Marcus A, Li W, Hu Y, Calzada J-PV, Grossniklaus U, Cyr RJ, Ma H (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development (Cambridge) 129:2401–2409

  • Cleary AL, Smith LG (1998) The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. Plant Cell 10(11):1875–1888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis A, Sage CR, Dougherty CA, Farrell KW (1994) Microtubule dynamics modulated by guanosine triphosphate hydrolysis activity of beta-tubulin. Science 264(5160):839–842

    CAS  PubMed  Google Scholar 

  • Dhonukshe P, Gadella TW Jr (2003) Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15(3):597–611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhonukshe P, Vischer N, Gadella TW Jr (2006) Contribution of microtubule growth polarity and flux to spindle assembly and functioning in plant cells. J Cell Sci 119(Pt 15):3193–3205. doi:10.1242/jcs.03048

    CAS  PubMed  Google Scholar 

  • Dhonukshe P, Weits DA, Cruz-Ramirez A, Deinum EE, Tindemans SH, Kakar K, Prasad K, Mähönen AP, Ambrose C, Sasabe M, Wachsmann G, Luijten M, Bennett T, Machida Y, Heidstra R, Wasteneys G, Mulder BM, Scheres B (2012) A PLETHORA-auxin transcription module controls cell division plane rotation through MAP65 and CLASP. Cell 149:383–396. doi:10.1016/j.cell.2012.02.051

    Google Scholar 

  • Dixit R, Cyr R (2004) The cortical microtubule array: from dynamics to organization. Plant Cell 16:2546–2552. doi:10.1105/tpc.104.161030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixit R, Chang E, Cyr R (2006) Establishment of polarity during organization of the acentrosomal plant cortical microtubule array. Mol Biol Cell 17(3):1298–1305. doi:10.1091/mbc.E05-09-0864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drevensek S, Goussot M, Duroc Y, Christodoulidou A, Steyaert S, Schaefer E, Duvernois E, Grandjean O, Vantard M, Bouchez D, Pastuglia M (2012) The Arabidopsis TRM1–TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell 24:178–191. doi:10.1105/tpc.111.089748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Endow SA (1999) Determinants of molecular motor directionality. Nat Cell Biol 1(6):E163–E167. doi:10.1038/14113

    CAS  PubMed  Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert AM, Schmit AC (2002) The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115(Pt 11):2423–2431

    CAS  PubMed  Google Scholar 

  • Fache V, Gaillard J, Van Damme D, Geelen D, Neumann E, Stoppin-Mellet V, Vantard M (2010) Arabidopsis kinetochore fiber-associated MAP65-4 cross-links microtubules and promotes microtubule bundle elongation. Plant Cell 22:3804–3815. doi:10.1105/tpc.110.080606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057. doi:10.1038/nature06206

    CAS  PubMed  Google Scholar 

  • Galjart N (2010) Plus-end-tracking proteins and their interactions at microtubule ends. Curr Biol 20:R528–R537. doi:10.1016/j.cub.2010.05.022

    CAS  PubMed  Google Scholar 

  • Gardiner J (2013) The evolution and diversification of plant microtubule-associated proteins. Plant J. doi:10.1111/tpj.12189

    PubMed  Google Scholar 

  • Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17(4):952–966. doi:10.1093/emboj/17.4.952

    CAS  PubMed  Google Scholar 

  • Gilmer S, Clay P, MacRae TH, Fowke LC (1999a) Acetylated tubulin is found in all microtubule arrays of two species of pine. Protoplasma 207(3–4):174–185. doi:10.1007/Bf01282998

    CAS  Google Scholar 

  • Gilmer S, Clay P, MacRae TH, Fowke LC (1999b) Tyrosinated, but not detyrosinated, alpha-tubulin is present in root tip cells. Protoplasma 210(1–2):92–98. doi:10.1007/Bf01314959

    CAS  Google Scholar 

  • Hamada T (2007) Microtubule-associated proteins in higher plants. J Plant Res 120:79–98. doi:10.1007/s10265-006-0057-9

    CAS  PubMed  Google Scholar 

  • Hardham AR, Gunning BE (1978) Structure of cortical microtubule arrays in plant cells. J Cell Biol 77(1):14–34

    CAS  PubMed  Google Scholar 

  • Ho CMK, Lee YRJ, Kiyama LD, Dinesh-Kumar SP, Liu B (2012) Arabidopsis microtubule-associated protein MAP65-3 cross-links antiparallel microtubules toward their plus ends in the phragmoplast via its distinct C-terminal microtubule binding domain. Plant Cell 24:2071–2085. doi:10.1105/tpc.111.092569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    CAS  PubMed  Google Scholar 

  • Inoue YH, do Carmo Avides M, Shiraki M, Deak P, Yamaguchi M, Nishimoto Y, Matsukage A, Glover DM (2000) Orbit, a novel microtubule-associated protein essential for mitosis in Drosophila melanogaster. J Cell Biol 149(1):153–166

    Google Scholar 

  • Ishida T, Hashimoto T (2007) An Arabidopsis thaliana tubulin mutant with conditional root-skewing phenotype. J Plant Res 120:635–640. doi:10.1007/s10265-007-0105-0

    CAS  PubMed  Google Scholar 

  • Ishida T, Kaneko Y, Iwano M, Hashimoto T (2007) Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:8544–8549. doi:10.1073/pnas.0701224104

    CAS  PubMed  Google Scholar 

  • Janski N, Masoud K, Batzenschlager M, Herzog E, Evrard JL, Houlne G, Bourge M, Chaboute ME, Schmit AC (2012) The GCP3-interacting proteins GIP1 and GIP2 are required for gamma-tubulin complex protein localization, spindle integrity, and chromosomal stability. Plant Cell 24(3):1171–1187. doi:10.1105/tpc.111.094904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janssens V, Longin S, Goris J (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 33(3):113–121. doi:10.1016/j.tibs.2007.12.004

    CAS  PubMed  Google Scholar 

  • Jayaram B, Haley BE (1994) Identification of peptides within the base binding domains of the GTP- and ATP-specific binding sites of tubulin. J Biol Chem 269(5):3233–3242

    CAS  PubMed  Google Scholar 

  • Jurgens G (2005) Plant cytokinesis: fission by fusion. Trends Cell Biol 15(5):277–283. doi:10.1016/j.tcb.2005.03.005

    PubMed  Google Scholar 

  • Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root 140:102-114. doi:10.1104/pp.105.069989.)

  • Kawasaki Y, Jigami T, Furukawa S, Sagara M, Echizen K, Shibata Y, Sato R, Akiyama T (2010) The adenomatous polyposis coli-associated guanine nucleotide exchange factor Asef is involved in angiogenesis. J Biol Chem 285(2):1199–1207. doi:10.1074/jbc.M109.040691

    CAS  PubMed  Google Scholar 

  • Kirik V, Grini PE, Mathur J, Klinkhammer I, Adler K, Bechtold N, Herzog M, Bonneville JM, Hulskamp M (2002a) The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the alpha/beta-tubulin monomer balance. Plant Cell 14(9):2265–2276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirik V, Mathur J, Grini PE, Klinkhammer I, Adler K, Bechtold N, Herzog M, Bonneville JM, Hulskamp M (2002b) Functional analysis of the tubulin-folding cofactor C in Arabidopsis thaliana. Curr Biol 12(17):1519–1523

    CAS  PubMed  Google Scholar 

  • Kirik V, Herrmann U, Parupalli C, Sedbrook JC, Ehrhardt DW, Hülskamp M (2007) CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. J Cell Sci 120:4416–4425. doi:10.1242/jcs.024950

    CAS  PubMed  Google Scholar 

  • Kirik A, Ehrhardt DW, Kirik V (2012) TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. Plant Cell 24(3):1158–1170. doi:10.1105/tpc.111.094367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komaki S, Abe T, Coutuer S, Inzé D, Russinova E, Hashimoto T (2010) Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J Cell Sci 123:451–459. doi:10.1242/jcs.062703

    CAS  PubMed  Google Scholar 

  • Kong Z, Hotta T, Lee YR, Horio T, Liu B (2010) The {gamma}-tubulin complex protein GCP4 is required for organizing functional microtubule arrays in Arabidopsis thaliana. Plant Cell 22(1):191–204. doi:10.1105/tpc.109.071191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP (1992) The small genome of Arabidopsis contains at least six expressed alpha-tubulin genes. Plant Cell 4(5):539–547. doi:10.1105/tpc.4.5.5394/5/539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lansbergen G, Akhmanova A (2006) Microtubule plus end: a hub of cellular activities. Traffic 7(5):499–507. doi:10.1111/j.1600-0854.2006.00400.x

    CAS  PubMed  Google Scholar 

  • Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167(1):19–22. doi:10.1083/jcb.200408113

    CAS  PubMed  Google Scholar 

  • Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19(1):239–250

    CAS  PubMed  Google Scholar 

  • Lee YR, Liu B (2000) Identification of a phragmoplast-associated kinesin-related protein in higher plants. Curr Biol 10(13):797–800

    CAS  PubMed  Google Scholar 

  • Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI (2006) LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133(21):4305–4314. doi:10.1242/dev.02604

    CAS  PubMed  Google Scholar 

  • Li H, Zeng X, Liu Z-Q, Meng Q-T, Yuan M, Mao T-L (2009) Arabidopsis microtubule-associated protein AtMAP65-2 acts as a microtubule stabilizer. Plant Mol Biol 69:313–324. doi:10.1007/s11103-008-9426-1

    CAS  PubMed  Google Scholar 

  • Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) Gamma-tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6(2):303–314. doi:10.1105/tpc.6.2.303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd C, Hussey P (2001) Microtubule-associated proteins in plants–why we need a MAP. Nat Rev Mol Cell Biol 2:40–47. doi:10.1038/35048005

    CAS  PubMed  Google Scholar 

  • Lu L, Lee YR, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16(2):811–823. doi:10.1091/mbc.E04-05-0400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lucas JR, Shaw SL (2012) MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. Plant J 71:454–463. doi:10.1111/j.1365-313X.2012.05002.x

    CAS  PubMed  Google Scholar 

  • Lucas JR, Courtney S, Hassfurder M, Dhingra S, Bryant A, Shaw SL (2011) Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. Plant Cell 23:1889–1903. doi:10.1105/tpc.111.084970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maiato H, Khodjakov A, Rieder CL (2005) Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nat Cell Biol 7(1):42–47. doi:10.1038/Ncb1207

    Google Scholar 

  • Mao T, Jin L, Li H, Liu B, Yuan M (2005) Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138:654–662. doi:10.1104/pp.104.052456.)

    Google Scholar 

  • Marcus AI, Li W, Ma H, Cyr RJ (2003) A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Mol Biol Cell 14:1717–1726. doi:10.1091/mbc.E02

    Google Scholar 

  • Mathur J, Mathur N, Kernebeck B, Srinivas BP, Hulskamp M (2003) A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization. Curr Biol 13(22):1991–1997

    CAS  PubMed  Google Scholar 

  • Mayer U, Herzog U, Berger F, Inze D, Jurgens G (1999) Mutations in the pilz group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm. Eur J Cell Biol 78(2):100–108

    CAS  PubMed  Google Scholar 

  • McClinton RS, Chandler JS, Callis J (2001) cDNA isolation, characterization, and protein intracellular localization of a katanin-like p60 subunit from Arabidopsis thaliana. Protoplasma 216(3–4):181–190

    CAS  PubMed  Google Scholar 

  • McNally FJ, Okawa K, Iwamatsu A, Vale RD (1996) Katanin, the microtubule-severing ATPase, is concentrated at centrosomes. J Cell Sci 109(Pt 3):561–567

    Google Scholar 

  • McNally KP, Bazirgan OA, McNally FJ (2000) Two domains of p80 katanin regulate microtubule severing and spindle pole targeting by p60 katanin. J Cell Sci 113(Pt 9):1623–1633

    CAS  PubMed  Google Scholar 

  • Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312(5991):237–242

    CAS  PubMed  Google Scholar 

  • Muller S, Fuchs E, Ovecka M, Wysocka-Diller J, Benfey PN, Hauser MT (2002) Two new loci, PLEIADE and HYADE, implicate organ-specific regulation of cytokinesis in Arabidopsis. Plant Physiol 130(1):312–324. doi:10.1104/pp.004416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14(5):412–417. doi:10.1016/j.cub.2004.02.032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Müller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser M-T (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14:412–417. doi:10.1016/j.cub.2004.02.032

    PubMed Central  PubMed  Google Scholar 

  • Müller S, Han S, Smith LG (2006) Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr Biol 16:888–894. doi:10.1016/j.cub.2006.03.034

    PubMed  Google Scholar 

  • Müller S, Wright AJ, Smith LG (2009) Division plane control in plants: new players in the band. Trends Cell Biol 19:180–188. doi:10.1016/j.tcb.2009.02.002

    PubMed  Google Scholar 

  • Nakamura M, Hashimoto T (2009) A mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122(Pt 13):2208–2217. doi:10.1242/jcs.044131

    CAS  PubMed  Google Scholar 

  • Nakamura M, Ehrhardt DW, Hashimoto T (2010) Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat Cell Biol 12(11):1064–1070. doi:10.1038/ncb2110

    CAS  PubMed  Google Scholar 

  • Neumann E, Damme DV, Stoppin-mellet V, Ebel C, Barbier E, Geelen D, Vantard M, Fourier J, Biologie ID, Ebel SJ (2008) Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol Biol Cell 19:4534–4544. doi:10.1091/mbc.E08

    Google Scholar 

  • Panteris E, Adamakis ID, Voulgari G, Papadopoulou G (2011) A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1 Arabidopsis thaliana mutants. Cytoskeleton 68(7):401–413. doi:10.1002/cm.20522

    CAS  PubMed  Google Scholar 

  • Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard JL, Schmit AC, Guerche P, Bouchez D (2006) Gamma-tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18(6):1412–1425. doi:10.1105/tpc.105.039644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pickett-Heaps JD, Northcote DH (1966) Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J Cell Sci 1(1):109–120

    CAS  PubMed  Google Scholar 

  • Rasmussen CG, Humphries JA, Smith LG (2011) Determination of symmetric and asymmetric division planes in plant cells. Annu Rev Plant Biol 62:387–409. doi:10.1146/annurev-arplant-042110-103802

    CAS  PubMed  Google Scholar 

  • Reddy AS, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson DN, Simmons MP, Reddy AS (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7:18. doi:10.1186/1471-2164-7-18

    PubMed Central  PubMed  Google Scholar 

  • Sakai T, Honing HVD, Nishioka M, Uehara Y, Takahashi M, Fujisawa N, Saji K, Seki M, Shinozaki K, Jones MA, Smirnoff N, Okada K, Wasteneys GO (2008) Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J 53:157–171. doi:10.1111/j.1365-313X.2007.03327.x

    Google Scholar 

  • Salisbury JL (1995) Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 7(1):39–45

    CAS  PubMed  Google Scholar 

  • Sasabe M, Machida Y (2006) MAP65: a bridge linking a MAP kinase to microtubule turnover. Curr Opin Plant Biol 9:563–570. doi:10.1016/j.pbi.2006.09.010

    CAS  PubMed  Google Scholar 

  • Sasabe M, Kosetsu K, Hidaka M, Murase A, Machida Y (2011) Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal Behav 6(5):743–747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sedbrook JC (2004) MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr Opin Plant Biol 7:632–640. doi:10.1016/j.pbi.2004.09.017

    CAS  PubMed  Google Scholar 

  • Seltzer V, Janski N, Canaday J, Herzog E, Erhardt M, Evrard JL, Schmit AC (2007) Arabidopsis GCP2 and GCP3 are part of a soluble gamma-tubulin complex and have nuclear envelope targeting domains. Plant J 52(2):322–331. doi:10.1111/j.1365-313X.2007.03240.x

    CAS  PubMed  Google Scholar 

  • Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300(5626):1715–1718. doi:10.1126/science.1083529

    CAS  PubMed  Google Scholar 

  • Shimamura M, Brown RC, Lemmon BE, Akashi T, Mizuno K, Nishihara N, Tomizawa K, Yoshimoto K, Deguchi H, Hosoya H, Horio T, Mineyuki Y (2004) Gamma-tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 16(1):45–59. doi:10.1105/tpc.016501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shivanna BD, Mejillano MR, Williams TD, Himes RH (1993) Exchangeable GTP binding site of beta-tubulin. Identification of cysteine 12 as the major site of cross-linking by direct photoaffinity labeling. J Biol Chem 268(1):127–132

    CAS  PubMed  Google Scholar 

  • Smertenko A, Blume Y, Viklicky V, Opatrny Z, Draber P (1997) Post-translational modifications and multiple tubulin isoforms in Nicotiana tabacum L. cells. Planta 201(3):349–358

    CAS  PubMed  Google Scholar 

  • Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2:750–753. doi:10.1038/35036390

    Google Scholar 

  • Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S (2002) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16:2035–2047. doi:10.1105/tpc.104.023937.2003a

    Google Scholar 

  • Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16(8):2035–2047. doi:10.1105/tpc.104.023937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smertenko AP, Kaloriti D, Chang H-Y, Fiserova J, Opatrny Z, Hussey PJ (2008) The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20:3346–3358. doi:10.1105/tpc.108.063362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smertenko AP, Piette B, Hussey PJ (2011) The origin of phragmoplast asymmetry. Curr Biol 21(22):1924–1930. doi:10.1016/j.cub.2011.10.012

    CAS  PubMed  Google Scholar 

  • Smith LG, Gerttula SM, Han S, Levy J (2001) Tangled1: a microtubule binding protein required for the spatial control of cytokinesis in maize. J Cell Biol 152:231–236

    CAS  PubMed  Google Scholar 

  • Snustad DP, Haas NA, Kopczak SD, Silflow CD (1992) The small genome of Arabidopsis contains at least nine expressed beta-tubulin genes. Plant Cell 4(5):549–556. doi:10.1105/tpc.4.5.549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spinner L, Pastuglia M, Belcram K, Pegoraro M, Goussot M, Bouchez D, Schaefer DG (2010) The function of TONNEAU1 in moss reveals ancient mechanisms of division plane specification and cell elongation in land plants. Development 137(16):2733–2742. doi:10.1242/dev.043810

    CAS  PubMed  Google Scholar 

  • Spinner L, Gadeyne A, Belcram K, Goussot M, Moison M, Duroc Y, Eeckhout D, De Winne N, Schaefer E, Van De Slijke E, Persiau G, Witters E, Gevaert K, De Jaeger G, Bouchez D, Van Damme D, Pastuglia M (2013) A protein phosphatase 2A complex spatially controls plant cell division. Nat Commun 4:1863. doi:10.1038/ncomms2831

    PubMed  Google Scholar 

  • Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, Geiges B, Kuttner F, Lepiniec L, Stierhof YD, Schwarz H, Jurgens G, Mayer U (2002) The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev 16(8):959–971. doi:10.1101/gad.221702

    CAS  PubMed  Google Scholar 

  • Stoppin-Mellet V, Gaillard J, Vantard M (2006) Katanin’s severing activity favors bundling of cortical microtubules in plants. Plant J 46:1009–1017. doi:10.1111/j.1365-313X.2006.02761.x

    CAS  PubMed  Google Scholar 

  • Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQ, Kadota A, Wada M (2010) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc Natl Acad Sci USA 107(19):8860–8865. doi:10.1073/pnas.0912773107

    CAS  PubMed  Google Scholar 

  • Szymanski D (2002) Tubulin folding cofactors: half a dozen for a dimer. Curr Biol 12(22):R767–R769

    CAS  PubMed  Google Scholar 

  • Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417(6885):193–196. doi:10.1038/417193a

    CAS  PubMed  Google Scholar 

  • Torres-Ruiz RA, Jurgens G (1994) Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120(10):2967–2978

    CAS  PubMed  Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375(6533):676–677. doi:10.1038/375676a0

    CAS  Google Scholar 

  • Tulin A, McClerklin S, Huang Y, Dixit R (2012) Single-molecule analysis of the microtubule cross-linking protein MAP65-1 reveals a molecular mechanism for contact-angle-dependent microtubule bundling. Biophys J 102:802–809. doi:10.1016/j.bpj.2012.01.008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 plays an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4:711–714. doi:10.1038/ncb844.MOR1/GEM1

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykret D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A, Kwiatkowska D, Hamant O (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149(2):439–451. doi:10.1016/j.cell.2012.02.048

    CAS  PubMed  Google Scholar 

  • Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93(5):863–873

    CAS  PubMed  Google Scholar 

  • Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288(5463):88–95

    CAS  PubMed  Google Scholar 

  • Van Damme D (2009) Division plane determination during plant somatic cytokinesis. Curr Opin Plant Biol 12:745–751. doi:10.1016/j.pbi.2009.09.014

    PubMed  Google Scholar 

  • Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inze D, Geelen D (2004) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136(4):3956–3967. doi:10.1104/pp.104.051623

    PubMed Central  PubMed  Google Scholar 

  • Vaughan KT (2005) TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. J Cell Biol 171(2):197–200. doi:10.1083/jcb.200509150

    CAS  PubMed  Google Scholar 

  • Walker KL, Müller S, Moss D, Ehrhardt DW, Laurie G (2007) Arabidopsis Tangled identifies the division plane throughout mitosis and cytokinesis. Curr Biol 17:1827–1836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W, Vignani R, Scali M, Sensi E, Cresti M (2004) Post-translational modifications of alpha-tubulin in Zea mays L. are highly tissue specific. Planta 218(3):460–465. doi:10.1007/s00425-003-1122-4

    CAS  PubMed  Google Scholar 

  • Wang F, Shi DQ, Liu J, Yang WC (2008) Novel nuclear protein ALC-INTERACTING PROTEIN1 is expressed in vascular and mesocarp cells in Arabidopsis. J Integr Plant Biol 50(7):918–927. doi:10.1111/j.1744-7909.2008.00694.x

    CAS  PubMed  Google Scholar 

  • Wasteneys GO (2002) Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115:1345–1354

    CAS  PubMed  Google Scholar 

  • Webb M, Jouannic S, Foreman J, Linstead P, Dolan L (2002) Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3—a katanin-p60 protein. Development (Cambridge) 129:123–131

    Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613. doi:10.1038/35079128

    Google Scholar 

  • Wicker-Planquart C, Stoppin-Mellet V, Blanchoin L, Vantard M (2004) Interactions of tobacco microtubule-associated protein MAP65-1b with microtubules. Plant J 39:126–134. doi:10.1111/j.1365-313X.2004.02115.x

    CAS  PubMed  Google Scholar 

  • Williams RC Jr, Shah C, Sackett D (1999) Separation of tubulin isoforms by isoelectric focusing in immobilized pH gradient gels. Anal Biochem 275(2):265–267. doi:10.1006/abio.1999.4326

    CAS  PubMed  Google Scholar 

  • Wright AJ, Gallagher K, Smith LG (2009) discordia1 and alternative discordia1 function redundantly at the cortical division site to promote preprophase band formation and orient division planes in maize. Plant Cell 21(1):234–247. doi:10.1105/tpc.108.062810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang G, Gao P, Zhang H, Huang S, Zheng ZL (2007) A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS ONE 2(10):e1074. doi:10.1371/journal.pone.0001074

    PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Wong ML, Alberts B, Mitchison T (1995) Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378(6557):578–583. doi:10.1038/378578a0

    CAS  PubMed  Google Scholar 

  • Zhong R, Burk DH, Herbert W, Iii M, Ye ZH (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117. doi:10.1105/tpc.005801.crofibrils

    Google Scholar 

  • Zhu C, Dixit R (2012) Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. Protoplasma 249:887–899. doi:10.1007/s00709-011-0343-9

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to the colleagues whose work could not be cited due to space constraints. This work was supported from the ERC Starting Investigator Grant and VIB-grant to P.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Dhonukshe.

Additional information

Communicated by N. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struk, S., Dhonukshe, P. MAPs: cellular navigators for microtubule array orientations in Arabidopsis . Plant Cell Rep 33, 1–21 (2014). https://doi.org/10.1007/s00299-013-1486-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1486-2

Keywords

Navigation