Plant Cell Reports

, Volume 32, Issue 11, pp 1661–1673 | Cite as

Nucleolar dominance and different genome behaviors in hybrids and allopolyploids

Review

Abstract

Many plants are allopolyploids with different nuclear genomes from two or more progenitors, but cytoplasmic genomes typically inherited from the female parent. The importance of this speciation mechanism has stimulated the extensive investigations of genetic consequences of genome mergers in several experimental systems during last 20 years. The dynamic nature of polyploid genomes is recognized, and widespread changes to gene expression are revealed by transcriptomic analysis. These progresses show different stabilities of parental genomes and their unequal contributions to the transcriptome, proteome, and phenotype. We review the results in systems where extensive genetic analyses have been conducted and propose possible mechanisms for biased behavior of parental genomes in allopolyploids, including the role of nucleolar dominance. It is hypothesized that the novel ribosomes with rRNAs from uniparental genome and the ribosomal proteins of biparental origins have some impacts on the biased cellular and genetic behaviors of parental genomes in hybrids and allopolyploids.

Keywords

Allopolyploid Genomic stabilities Nucleolar dominance Cytogenetics Ribosome 

References

  1. Adams KL, Wendel JF (2004) Exploring the genomic mysteries of polyploidy in cotton. Biol J Linn Soc 82:573–581Google Scholar
  2. Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654PubMedGoogle Scholar
  3. Ainouche ML, Baumel A, Salmon A (2004) Spartina anglica C. E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol J Linn Soc 82:475–484Google Scholar
  4. Albertin W, Balliau T, Brabant P, Chèvre AM, Eber F, Malosse C, Thiellement H (2006) Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics 173:1101–1113PubMedGoogle Scholar
  5. Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54PubMedGoogle Scholar
  6. Anamthawat-Jónsson K, Schwarzacher T, Heslop-Harrison JS (1993) Behavior of parental genomes in the hybrid Hordeum vulgare × H. bulbosum. J Hered 84:78–82Google Scholar
  7. Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83PubMedGoogle Scholar
  8. Axelsson T, Bowman CM, Sharpe AG, Lydiate DJ, Lagercrantz U (2000) Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome 43:679–688PubMedGoogle Scholar
  9. Beaulieu J, Jean M, Belzile F (2009) The allotetraploid Arabidopsis thaliana -Arabidopsis lyrata subsp petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genomics 281:421–435PubMedGoogle Scholar
  10. Bento M, Gustafson JP, Viegas W, Silva M (2011) Size matters in Triticeae polyploids: larger genomes have higher remodeling. Genome 54:175–183PubMedGoogle Scholar
  11. Bottley A, Koebner RMD (2008) Variation for homoeologous gene silencing in hexaploid wheat. Plant J 56:297–302PubMedGoogle Scholar
  12. Bottley A, Xia GM, Koebner RMD (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906PubMedGoogle Scholar
  13. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole—genome shotgun sequencing. Nature 491:705–710PubMedGoogle Scholar
  14. Buggs RJA, Doust AN, Tate JA, Koh J, Soltis K, Feltus FA, Paterson AH, Soltis PS, Soltis DE (2009) Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity 103:73–81PubMedGoogle Scholar
  15. Buggs RJA, Chamala S, Wu W, Gao L, May GD, Schnable PS, Soltis DE, Soltis PS, Barbazuk WB (2010a) Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping. Mol Ecol 19:132–146PubMedGoogle Scholar
  16. Buggs RJA, Elliott NM, Zhang L, Koh J, Viccini LF, Soltis DE, Soltis PS (2010b) Tissue-specific silencing of homoeologs in natural populations of the recent allopolyploid Tragopogon mirus. New Phytol 186:175–183PubMedGoogle Scholar
  17. Buggs RJA, Chamala S, Wu W, Tate JA, Schnable PS, Soltis DE, Soltis PS, Barbazuk WB (2012) Rapid, repeated and clustered loss of duplicate genes in allopolyploid plant populations of independent origin. Curr Biol 22:1–5Google Scholar
  18. Byrne ME (2009) A role for the ribosome in development. Trends Plant Sci 14:512–519PubMedGoogle Scholar
  19. Carroll AJ, Heazlewood JL, Ito J, Millar AH (2008) Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol Cell Proteomics 7:347–369PubMedGoogle Scholar
  20. Chang IF, Szick-Miranda K, Pan SQ, Bailey-Serres J (2005) Proteomic characterization of evolutionarily conserved and variable proteins of Arabidopsis cytosolic ribosomes. Plant Physiol 137:848–862PubMedGoogle Scholar
  21. Chelaifa H, Monnier A, Ainouche M (2010) Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina x townsendii and Spartina anglica (Poaceae). New Phytol 186:161–174PubMedGoogle Scholar
  22. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406PubMedGoogle Scholar
  23. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71PubMedGoogle Scholar
  24. Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploid plants: biased expressiony silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci USA 94:3442–3447PubMedGoogle Scholar
  25. Chen ZJ, Comai L, Pikaard CS (1998) Gene dosage and stochastic effects determine the severity and direction of uniparental rRNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc Natl Acad Sci USA 95:14891–14896PubMedGoogle Scholar
  26. Chen HF, Wang H, Li ZY (2007) Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris. Plant Cell Rep 26:1791–1800PubMedGoogle Scholar
  27. Cheng BF, Seguin-Swartz G, Somers DJ (2002) Cytogenetic and molecular characterization of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Genome 45:110–115PubMedGoogle Scholar
  28. Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci USA 109:1176–1181PubMedGoogle Scholar
  29. Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1921–1928Google Scholar
  30. Cho K, O’Neill CM, Kwon SJ, Yang TJ, Smooker AM, Fraser F, Bancroft I (2009) Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci. Plant J 61:591–599PubMedGoogle Scholar
  31. Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252PubMedGoogle Scholar
  32. Clarkson JJ, Kelly LJ, Leitch AR, Knapp S, Chase MW (2010) Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids. Mol Phylogenet Evol 55:99–112PubMedGoogle Scholar
  33. Cockell M, Gasser SM (1999) Nuclear compartments and gene regulation. Curr Opion Genet Dev 9:199–205Google Scholar
  34. Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:1551–1567PubMedGoogle Scholar
  35. Cui C, Ge XH, Gautam M, Kang L, Li ZY (2012) Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids. Genetics 191:725–738PubMedGoogle Scholar
  36. Cui C, Ge XH, Zhou YY, Li MT, Li ZY (2013) Cytoplasmic and genomic effects on non-meiosis-driven genetic changes in Brassica hybrids and allotetraploids from pairwise crosses of three cultivated diploids. PLoS One 8:e65078PubMedGoogle Scholar
  37. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461PubMedGoogle Scholar
  38. Du XZ, Ge XH, Zhao ZG, Li ZY (2008) Chromosome elimination and fragment introgression and recombination producing intertribal partial hybrids from Brassica napus × Lesquerella fendleri crosses. Plant Cell Rep 27:261–271PubMedGoogle Scholar
  39. Eilam T, Anikster Y, Millet E, Manisterski J, Sagi-Assif O, Feldman M (2007) Genome size and genome evolution in diploid Triticeae species. Genome 50:1029–1037PubMedGoogle Scholar
  40. Finch RA, Bennett MD (1983) The mechanism of somatic chromosome elimination. In: Brandham PE, Bennett MD (eds) Hordeum Kew Conference. London: George Allen and Unwin, II pp 147–154Google Scholar
  41. Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184–193PubMedGoogle Scholar
  42. Flowers JM, Burton RS (2006) Ribosomal RNA gene silencing in interpopulation hybrids of Tigriopus californicus: nucleolar dominance in the absence of intergenic spacer subrepeats. Genetics 173:1479–1486PubMedGoogle Scholar
  43. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417PubMedGoogle Scholar
  44. Ge XH, Wang J, Li ZY (2009) Different genome-specific chromosome stabilities in synthetic Brassica allopolyploids revealed by wide cross with Orychophragms. Ann Bot 104:19–31PubMedGoogle Scholar
  45. Gill BS (1991) Nucleo-cytoplasmic interaction (NCI) hypothesis of genome evolution and speciation in polyploid plants. Nuclear and Organellar Genomes of Wheat Species. In: Sasakuma T, Kinoshita T (eds) Proceedings of the Dr. H. Kihara Memorial International symposium on cytoplasmic engineering in wheat. Kihara Memorial Yokohama Foundation for the advancement of life science, Japan. pp 48–53Google Scholar
  46. Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752PubMedGoogle Scholar
  47. Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14:1021–1026PubMedGoogle Scholar
  48. Hanson RE, Islam-Faridi MN, Percival EA, Crane CF, Ji Y, McKnight TD, Stelly DM, Price HJ (1996) Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105:55–61PubMedGoogle Scholar
  49. Hanson R, Zhao XP, Islam-Faridi MN, Paterson AH, Zwick MS, Crane CF, McKnight TD, Stelly DM, Price HJ (1998) Evolution of interspersed repetitive elements in Gossypium (Malvaceae). Am J Bot 85:1364–1368PubMedGoogle Scholar
  50. Hanson RE, Islam-Faridi MN, Crane CF, Zwick MS, Czeschin DG, Wendel JF, McKnight TD, Price HJ, Stelly DM (2000) Ty1-copia-retrotransposon behavior in a polyploid cotton. Chromosome Res 8:73–76PubMedGoogle Scholar
  51. Hasterok R, Maluszynska J (2000) Nucleolar dominance does not occur in root tip cells of allotetraploid Brassica species. Genome 43:574–579PubMedGoogle Scholar
  52. Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490Google Scholar
  53. He P, Friebe BR, Gill BS, Zhou JM (2003) Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol 52:401–414PubMedGoogle Scholar
  54. Hegarty M, Hiscock S (2007) Polyploidy: doubling up for evolutionary success. Curr Biol 17:927–929Google Scholar
  55. Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol 16:1652–1659PubMedGoogle Scholar
  56. Hendrix B, Stewart JM (2005) Estimation of the nuclear DNA content of Gossypium species. Ann Bot 95:789–797PubMedGoogle Scholar
  57. Hua YW, Li ZY (2006) Genomic in situ hybridization analysis of intergeneric hybrids between Brassica napus and Orychophragmus violaceus and production of B. napus aneuploids. Plant Breed 125:144–149Google Scholar
  58. Hua YW, Liu M, Li ZY (2006) Parental genome separation and elimination of cells and chromosomes revealed by GISH and AFLP analysis in intergeneric hybrids between Brassica carinata and Orychophragmus violaceus. Ann Bot 97:993–998PubMedGoogle Scholar
  59. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138PubMedGoogle Scholar
  60. Ide S, Miyazaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693–696PubMedGoogle Scholar
  61. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235PubMedGoogle Scholar
  62. Joly S, Rauscher JT, Sherman-Broyles SL, Brown AH, Doyle JJ (2004) Evolutionary dynamics and preferential expression of homeologous 18S-5.8S-26S nuclear ribosomal genes in natural and artificial Glycine allopolyploids. Mol Biol Evol 21:1409–1421PubMedGoogle Scholar
  63. Jones N, Pašakinskienė I (2005) Genome conflict in the Gramineae. New Phytol 165:391–409PubMedGoogle Scholar
  64. Kamm A, Galasso I, Schmidt T, Heslop-Harrison JS (1995) Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol 27:853–862PubMedGoogle Scholar
  65. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876PubMedGoogle Scholar
  66. Kobayashi T (2008) A new role of the rDNA and nucleolus in the nucleus-rDNA instability maintains genome integrity. BioEssays 30:267–272PubMedGoogle Scholar
  67. Kobayashi T, Ganley ARD (2005) Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309:1581–1584PubMedGoogle Scholar
  68. Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498PubMedGoogle Scholar
  69. Kondrashov N, Pusic A, Stumpf CR, Shimizu K, Hsieh AC, Xue S, Ishijima J, Shiroishi T, Barna M (2011) Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145:383–397PubMedGoogle Scholar
  70. Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, Rocca J, Soltis DE, Soltis PS (2005) Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169:2509–2519Google Scholar
  71. Książczyk T, Kovarik A, Eber F, Huteau V, Khaitova L, Tesarikova Z, Coriton O, Chèvre AM (2011) Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus. Chromosoma 120:557–571PubMedGoogle Scholar
  72. Lacadena JR, Cermeno MC, Orellana J, Santos JL (1988) Nucleolar competition in Triticeae. In: Brandham PE (ed) Kew Chromosome Conference. III. London UK, Her Majesty’s Stationery Office pp 151–165Google Scholar
  73. Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483PubMedGoogle Scholar
  74. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New YorkGoogle Scholar
  75. Lewis MS, Cheverud JM, Pikaard CS (2004) Evidence for nucleolus organizer regions as the units of regulation in nucleolar dominance in Arabidopsis thaliana interecotype hybrids. Genetics 167:931–939PubMedGoogle Scholar
  76. Li ZY, Ge XH (2007) Unique chromosome behavior and genetic control in Brassica × Orychophragmus wide hybrids: a review. Plant Cell Rep 26:701–710PubMedGoogle Scholar
  77. Li Z, Heneen WK (1999) Production and cytogenetics of intergeneric hybrids between the three cultivated Brassica diploids and Orychophragmus violaceus. Theor Appl Genet 99:694–704PubMedGoogle Scholar
  78. Li Z, Liu HL, Luo P (1995) Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet 91:131–136Google Scholar
  79. Li Z, Wu JG, Liu Y, Liu HL, Heneen WK (1998) Production and cytogenetics of intergeneric hybrids Brassica juncea × Orychophragmus violaceus and B. carinata × O. violaceus. Theor Appl Genet 96:251–265Google Scholar
  80. Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, Srubarova H, Kovarik A, Pires JC, Xiong Z, Leitch AR (2008) Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One 3:e3353PubMedGoogle Scholar
  81. Liu M, Li Z (2007) Genome doubling and chromosome elimination with fragment recombination leading to the formation of Brassica rapa-type plants with genomic alterations in crosses with Orychophragmus violaceus. Genome 50:985–993PubMedGoogle Scholar
  82. Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330PubMedGoogle Scholar
  83. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525PubMedGoogle Scholar
  84. Ma XF, Gustafson JP (2008) Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot 101:825–832PubMedGoogle Scholar
  85. Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230PubMedGoogle Scholar
  86. Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, Soltis PS, Kovarik A (2010) Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol 10:291PubMedGoogle Scholar
  87. Marmagne A, Brabant P, Thiellement H, Alix K (2010) Analysis of gene expression in resynthesized Brassica napus allotetraploids: transcriptional changes do not explain differential protein regulation. New Phytol 186:216–227PubMedGoogle Scholar
  88. Matyásek R, Tate JA, Lim YK, Srubarová H, Koh J, Leitch AR, Soltis DE, Soltis PS, Kovarík A (2007) Concerted evolution of rDNA in recently formed Tragopogon allotetraploids is typically associated with an inverse correlation between gene copy number and expression. Genetics 176:2509–2519PubMedGoogle Scholar
  89. Mauro VP, Edelman GM (2002) The ribosome filter hypothesis. Proc Natl Acad Sci USA 99:12031–12036PubMedGoogle Scholar
  90. Miller DA, Dev VG, Tantravahi R, Miller OJ (1976) Suppression of human nucleolus organizer activity in mouse-human somatic hybrid cells. Exp Cell Res 101:235–243PubMedGoogle Scholar
  91. Moss T, Stefanovsky VY (2002) At the center of eukaryotic life. Cell 109:545–548PubMedGoogle Scholar
  92. Mozgova I, Mokros P, Fajkus J (2010) Dysfunction of chromatin assembly Factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell 22:2768–2780PubMedGoogle Scholar
  93. Navashin M (1934) Chromosomal alterations caused by hybridization and their bearing upon certain general genetic problems. Cytologia 5:169–203Google Scholar
  94. Olson MOJ, Dundr M, Szebeni A (2000) The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol 10:189–196PubMedGoogle Scholar
  95. Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747PubMedGoogle Scholar
  96. Paredes S, Maggert KA (2009) Ribosomal DNA contributes to global chromatin regulation. Proc Natl Acad Sci USA 106:17829–17834PubMedGoogle Scholar
  97. Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien MA, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015PubMedGoogle Scholar
  98. Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–428PubMedGoogle Scholar
  99. Pikaard CS (2000) Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids. Plant Mol Biol 43:163–177PubMedGoogle Scholar
  100. Pires JC, Lim KY, Kovarik A, Matyásek R, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE (2004a) Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022–1035PubMedGoogle Scholar
  101. Pires JC, Zhao JW, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004b) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688Google Scholar
  102. Pontes O, Lawrence RJ, Neves N, Silva M, Lee JH, Chen ZJ, Viegas W, Pikaard CS (2003) Natural variation in nucleolar dominance reveals the relationship between nucleolus organizer chromatin topology and rRNA gene transcription in Arabidopsis. Proc Natl Acad Sci USA 100:11418–11423PubMedGoogle Scholar
  103. Prakash S, Bhat SR, Quiros CF, Kirti PB, Chopra VL (2009) Brassica and its close allies: cytogenetics and evolution. Plant Breed Rev 31:21–187Google Scholar
  104. Preuss SB, Costa-Nunes P, Tucker S, Pontes O, Lawrence RJ, Mosher R, Kasschau KD, Carrington JC, Baulcombe DC, Viegas W, Pikaard CS (2008) Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell 32:673–684PubMedGoogle Scholar
  105. Preuss SB, Pikaard CS (2007). rRNA gene silencing and nucleolar dominance: Insights into a chromosome-scale epigenetic on/off switch. Biochim Biophys Acta. 1769:383–392PubMedGoogle Scholar
  106. Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill BS (2009) Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181:1147–1157PubMedGoogle Scholar
  107. Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18PubMedGoogle Scholar
  108. Reeder RH (1985) Mechanisms of nucleolar dominance in animals and plants. J Cell Biol 101:2013–2016PubMedGoogle Scholar
  109. Renny-Byfield S, Chester M, Kovarik A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novák P, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854PubMedGoogle Scholar
  110. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715Google Scholar
  111. Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175PubMedGoogle Scholar
  112. Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:E498–E505PubMedGoogle Scholar
  113. Schwarzacher T, Finch RA, Smith JB, Benett MD (1987) Genotypic control of centromere positions of parental genomes in Hordeum × Secale hybrid metaphases. J Cell Sci 87:291–304Google Scholar
  114. Schwarzacher T, Heslop-Harrison JS, Anamthawat-Jónsson K, Finch RA, Bennett MD (1992) Parental genome separation in reconstructions of somatic and premeiotic metaphases of Hordeum vulgare × H. bulbosum. J Cell Sci 101:13–24Google Scholar
  115. Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13–31PubMedGoogle Scholar
  116. Soltis PS, Soltis DE (2012) Polyploidy and genome evolution. Springer-Verlag, New York, pp 1–416Google Scholar
  117. Soltis PS, Buggs RJA, Barbazuk WB, Chamala S, Chester M, Gallahger JP, Schnable PS, Soltis DE (2012) The early stage of polyploidy: Rapid and repeated evolution in Tragopogon. In: Soltis PS, Soltis DE (eds) Polyploidy and Genome Evolution. Springer-Verlag, New York, pp 271–292Google Scholar
  118. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723PubMedGoogle Scholar
  119. Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ, Chalhoub B, Jenczewski E, Chèvre AM (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112PubMedGoogle Scholar
  120. Szadkowski E, Eber F, Huteau V, Lodé M, Coriton O, Jenczewski E, Chèvre AM (2011) Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. New Phytol 191:884–894PubMedGoogle Scholar
  121. Tate JA, Ni Z, Scheen AC, Koh J, Gilbert CA, Lefkowitz D, Chen ZJ, Soltis PS, Soltis DE (2006) Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173:1599–1611PubMedGoogle Scholar
  122. Tate JA, Joshi P, Soltis KA, Soltis PS, Soltis DE (2009) On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae). BMC Plant Biol 9:80PubMedGoogle Scholar
  123. Topisirovic I, Sonenberg N (2011) Translational control by the eukaryotic ribosome. Cell 145:333–334PubMedGoogle Scholar
  124. Tu YQ, Sun J, Ge XH, Li ZY (2010) Production and genetic analysis of partial hybrids from intertribal sexual crosses between Brassica napus and Isatis indigotica and progenies. Genome 53:146–156PubMedGoogle Scholar
  125. Tucker S, Vitins A, Pikaard CS (2010) Nucleolar dominance and ribosomal RNA gene silencing. Curr Opin Cell Biol 22:351–356PubMedGoogle Scholar
  126. Visintin R, Amon A (2000) The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 12:372–377PubMedGoogle Scholar
  127. Volkov RA, Komarova NY, Hemleben V (2007) Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst Biodiver 5:261–276Google Scholar
  128. Wang JL, Tian L, Lee HS, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517PubMedGoogle Scholar
  129. Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186Google Scholar
  130. Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284PubMedGoogle Scholar
  131. Whittle CA, Krochko JE (2009) Transcript profiling provides evidence of functional divergence and expression networks among ribosomal protein gene paralogs in Brassica napus. Plant Cell 21:2203–2219PubMedGoogle Scholar
  132. Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913PubMedGoogle Scholar
  133. Xu Y, Zhong L, Wu X, Fang X, Wang J (2009) Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta 229:471–483PubMedGoogle Scholar
  134. Xue SF, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13:355–369PubMedGoogle Scholar
  135. Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F, Jiang J, von Wettstein D, Liu B (2013) Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci USA 110:3447–3452PubMedGoogle Scholar
  136. Zhao XP, Si Y, Hanson RE, Crane CF, Price HJ, Stelly DM, Wendel JF, Paterson AH (1998) Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res 8:479–492PubMedGoogle Scholar
  137. Zhao ZG, Hu TT, Ge XH, Du XZ, Ding L, Li ZY (2008) Production and characterization of intergeneric somatic hybrids between Brassica napus and Orychophragmus violaceus and their backcrossing progenies. Plant Cell Rep 27:1611–1621PubMedGoogle Scholar
  138. Zhou RC, Moshgabadi N, Adams KL (2011) Extensive changes to alternative splicing patterns following allopolyploidy in natural and resynthesized polyploids. Proc Natl Acad Sci USA 108:16122–16127PubMedGoogle Scholar
  139. Zohary D, Feldman M (1962) Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution pp 44–61Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement (Wuhan)Huazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations