Skip to main content
Log in

Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

An efficient, reproducible and genotype-independent in planta transformation has been standardized for sugarcane using seed as explant.

Abstract

Transgenic sugarcane production through Agrobacterium infection followed by in vitro regeneration is a time-consuming process and highly genotype dependent. To obtain more number of transformed sugarcane plants in a relatively short duration, sugarcane seeds were infected with Agrobacterium tumefaciens EHA 105 harboring pCAMBIA 1304-bar and transformed plants were successfully established without undergoing in vitro regeneration. Various factors affecting sugarcane seed transformation were optimized, including pre-culture duration, acetosyringone concentration, surfactants, co-cultivation, sonication and vacuum infiltration duration. The transformed sugarcane plants were selected against BASTA® and screened by GUS and GFP visual assay, PCR and Southern hybridization. Among the different combinations and concentrations tested, when 12-h pre-cultured seeds were sonicated for 10 min and 3 min vacuum infiltered in 100 µM acetosyringone and 0.1 % Silwett L-77 containing Agrobacterium suspension and co-cultivated for 72-h showed highest transformation efficiency. The amenability of the standardized protocol was tested on five genotypes. It was found that all the tested genotypes responded favorably, though CoC671 proved to be the best responding cultivar with 45.4 % transformation efficiency. The developed protocol is cost-effective, efficient and genotype independent without involvement of any tissue culture procedure and can generate a relatively large number of transgenic plants in approximately 2 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog medium

GA3 :

Gibberellic acid

hpt II:

Hygromycin phosphotransferase

npt II:

Neomycin phosphotransferase

gfpgus :

Green fluorescent protein-β-glucuronidase fusion gene

CaMV 35S:

Cauliflower mosaic virus 35S promoter

References

  • Adesoye AI, Togun AO, Machuka J (2010) Transformation of cowpea (Vigna unguiculata L. Walp.) by Agrobacterium infiltration. J Appl Biosci 30:1845–1860

    Google Scholar 

  • Agarwal S, Loar S, Steber C, Zale J (2009) Floral transformation of wheat. Methods Mol Biol 478:105–113

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Mirza B (2005) An efficient protocol for transient transformation of intact fruit and transgene expression in citrus. Plant Mol Biol Rep 23:419a–419k

    Article  Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Anisuzzaman M, Alam MF, Yoon HS, Choi MS, Yang JK, Lee BH (2007) The effects of wounding type, pre-culture, infection method and co-cultivation temperature on the Agrobacterium-mediated gene transfer in tomatoes. Ann Appl Biol 151:363–372

    Article  CAS  Google Scholar 

  • Akbulut M, Yücel M, Öktem HA (2008) Analysis and optimization of DNA delivery into chickpea (Cicer arietinum L.) seedlings by Agrobacterium tumefaciens. Afr J Biotechnol 7(8):1011–1017

    CAS  Google Scholar 

  • An G (1985) High-efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570

    Article  PubMed  CAS  Google Scholar 

  • Arencibia AE, Carmona P, Tellez MT, Chan SM, Yu L, Trujillo, p Oramas (1998) An efficient protocol for sugarcane (Saccharum spp.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222

    Article  CAS  Google Scholar 

  • Arencibia A, Carmona E, Cornide MT, Castiglione S, O’Relly J, Cinea A, Oramas P, Sala F (1999) Somaclonal variation in insect resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res 8:349–360

    Article  CAS  Google Scholar 

  • Arvinth S, Arun S, Selvakesavan RK, Srikanth J, Mukunthan N, Ananda Kumar P, Premachandran MN, Subramonian N (2010) Genetic transformation and pyramiding of aprotinin expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant Cell Rep 29(4):383–395

    Article  PubMed  CAS  Google Scholar 

  • Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30:2281–2292

    Article  PubMed  CAS  Google Scholar 

  • Bechtold N, Jaudeau B, Jolivet S, Maba B, Vezon D, Voisin R, Pelletier G (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155:1875–1887

    PubMed  CAS  Google Scholar 

  • Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547

    Article  PubMed  CAS  Google Scholar 

  • Beranová M, Rakousky S, Vávrová Z, Skalicky T (2008) Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linux usitatissimum L.). Plant Cell Tissue Org Cult 94:253–259

    Article  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Cardoza V, Stewart CN Jr (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl explants. Plant Cell Rep 21:599–604

    PubMed  CAS  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L, Pena L (1998) Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18:271–278

    Article  CAS  Google Scholar 

  • Chen X, Equi R, Baxter H, Berk K, Han J, Agarwal S, Zale J (2010) A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnol Biofuels 3:9

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Chowdhury MKU, Vasil IK (1992) Stably transformed herbicide resistance callus of sugarcane via microprojectile bombardment of cell suspension cultures and electroporation of protoplasts. Plant Cell Rep 11:494–498

    Article  Google Scholar 

  • Christou P, Ford T, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957–962

    Article  Google Scholar 

  • Chumakov MI, Rozhok NA, Velikov VA, Tyrnov VS, Volokhina IV (2006) Agrobacterium-mediated in planta transformation of maize via pistil filaments. Russ J Genet 42:893–897

    Article  CAS  Google Scholar 

  • Chung MH, Chen MK, Pan SM (2000) Floral spray transformation can efficiently generate Arabidopsis transgenic plants. Transgenic Res 9:471–476

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L.var. longipinnatus Bailey) by floral-dip method—plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res 10:363–371

    Article  PubMed  CAS  Google Scholar 

  • Curtis IS, Power JB, Hedden P, Ward DA, Phillips A, Lower KC, Davey MR (1999) A stable transformation system for the ornamental plant, Datura meteloides (D.C.). Plant Cell Rep 18:554–560

    Article  CAS  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  PubMed  CAS  Google Scholar 

  • De Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2009) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28:387–395

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Elliott AR, Campbell JA, Bretell RIS, Grof CPL (1998) Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker. Aust J Plant Physiol 25:739–743

    Article  CAS  Google Scholar 

  • Enríquez GA, Trujillo LE, Menéndez C, Vázquez-Padrón RI, Tiel K, Dafhnis F, Arrieta J, Selman G, Hernandez L (2000) Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. In: Arencibia A (ed) Developments in plant genetics and breeding. Elsevier, Amsterdam, pp 76–81

    Google Scholar 

  • Enríquez-Obregón GA, Vázquez-padrón RI, Prieto-sansonov DL, de la Riva GA, Selman-Housein G (1998) Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Article  Google Scholar 

  • FAOSTAT (2011) Agricultural data. http://faostat.fao.org/site/339/default.aspx

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–838

    Article  PubMed  CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 36:1367–1374

    Article  CAS  Google Scholar 

  • Goldberg JB, Ohman DE (1984) Cloning and expression in Pseudomonas aeruginosa of a gene involved with the production of alginate. J Bacteriol 158:1115–1121

    PubMed  CAS  Google Scholar 

  • Grabowska A, Filipecki M (2004) Infiltration with Agrobacterium—the method for stable transformation avoiding tissue culture. Acta Physiol Plant 26(4):451–458

    Article  Google Scholar 

  • Hadi MZ, Kemper E, Wendeler E, Reiss B (2002) Simple and versatile selection of Arabidopsis transformants. Plant Cell Rep 21:130–135

    Article  CAS  Google Scholar 

  • Hamza S, Chupeau Y (1993) Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J Exp Bot 44:1837–1845

    Article  CAS  Google Scholar 

  • Herath SP, Suzuki T, Hattori K (2005) Factors influencing Agroacterium-mediated genetic transformation of kenaf. Plant Cell Tissue Org Cult 82:201–206

    Article  CAS  Google Scholar 

  • Hoerlein G (1994) Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Rev Environ Contam Toxicol 138:73–145

    Article  PubMed  CAS  Google Scholar 

  • Hu CY, Wang L (1999) In-planta soybean transformation technologies developed in China: procedure, confirmation and field performance. In Vitro Cell Dev Biol 35:417–420

    Article  Google Scholar 

  • Hu Z, Wu YR, Li W, Gao HH (2006) Factors affecting Agrobacterium tumefaciens-mediated genetic transformation of Lycium barbarum L. In Vitro Cell Dev Biol Plant 42:461–466

    Article  CAS  Google Scholar 

  • Huang XQ, Wei ZM (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Org Cult 83:187–200

    Article  Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Post transcriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 26:581–590

    Article  PubMed  CAS  Google Scholar 

  • Janssen BJ, Gardner RC (1993) The use of transient GUS expression to develop an Agrobacterium-mediated gene transfer system for kiwi fruit. Plant Cell Rep 12:28–31

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan NW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Joersbo M, Brunstedt J (1992) Sonication: a new method for gene transfer to plants. Physiol Plant 85:230–234

    Article  CAS  Google Scholar 

  • Kalunke RM, Kolge AM, Babu KH, Prasad DT (2009) Agrobacterium-mediated transformation of sugarcane for borer resistance using Cry 1Aa3 gene and one-step regeneration of transgenic plants. Sugar Tech 11(4):355–359

    Article  CAS  Google Scholar 

  • Keshamma E, Rohini S, Rao KS, Madhusudhan B, Udaya Kumar M (2008) Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12:264–272

    CAS  Google Scholar 

  • Li JF, Park E, von Arnim AG, Nebenführ A (2009a) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:6.A

    Article  CAS  Google Scholar 

  • Li S, Zhao DG, Wu YJ, Tian X (2009b) A simplified seed transformation method for obtaining transgenic Brassica napus plants. Agric Sci China 8(6):658–663

    Article  CAS  Google Scholar 

  • Li J, Tan X, Zhu F, Guo J (2010) Rapid and simple method for Brassica Napus floral-dip transformation and selection of transgenic plantlets. Int J Biol 2:127–131

    CAS  Google Scholar 

  • Lin J, Zhou B, Yang Y, Mei J, Zhao X, Guo X, Huang X, Tang D, Liu X (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep 28:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Park B-J, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol Breed 16:189–197

    Article  CAS  Google Scholar 

  • Liu Y, Yang H, Sakanishi A (2006) Ultrasound: mechanical gene transfer into plant cells by sonoporation. Biotechnol Adv 24:1–16

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Ma HM, Schulze S, Lee S, Yang M, Mirkov E, Irvine J, Moore P, Paterson A (2004) An EST survey of the sugarcane transcriptome. Theor Appl Genet 108:851–863

    Article  PubMed  Google Scholar 

  • Madhou P, Raghavan C, Wells A, Stevenson TW (2006) Genome wide microarray analysis of the effect of a surfactant application in Arabidopsis. Weed Res 46:275–283

    Article  CAS  Google Scholar 

  • Mamontova EM, Velikov VA, Volokhina IV, Chumakov MI (2010) Agrobacterium-mediated in planta transformation of maize germ cells. Russ J Genet 46:501–504

    Article  CAS  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  PubMed  CAS  Google Scholar 

  • Manoj Kumar A, Sreevathsa R, Nanja Reddy K, Ganesh PT, Udayakumar M (2011) Amenability of castor to an Agrobacterium- mediated in planta transformation strategy using a cry1AcF gene for insect tolerance. J Crop Sci Biotech 14(2):125–132

    Article  Google Scholar 

  • Mariashibu TS, Subramanyam K, Arun M, Mayavan S, Rajesh M, Theboral J, Manickavasagam M, Ganapathi A (2013) Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Acta Physiol Plant 35:41–54

    Article  CAS  Google Scholar 

  • McHughen A, Jordan M, Feist G (1989) A pre-culture period prior to Agrobacterium inoculation increases production of transgenic plants. J Plant Physiol 135:245–248

    Article  Google Scholar 

  • Mengiste T, Amedeo P, Paszkowski J (1997) High-efficiency transformation of Arabidopsis thaliana with a selectable marker gene regulated by the T-DNA 19 promoter. Plant J 12:945–948

    Article  PubMed  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, De Campos MKP, De Carvalho JFRP, Filho JCB, Pereira LFP, Vieira LGE (2008) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130(2):218–229

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naseri G, Sohani MM, Pourmassalehgou A, Allahi S (2012) In planta transformation of rice (Oryza sativa) using thaumatin-like protein gene for enhancing resistance to sheath blight. Afr J Biotechnol 11(31):7885–7893

    CAS  Google Scholar 

  • Park BJ, Liu Z, Kanno A, Kameya T (2005) Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harbouring a group 3 LEA gene from B. Napus. Plant Cell Rep 24:494–500

    Article  PubMed  CAS  Google Scholar 

  • Pathak MR, Hamzah RY (2008) An effective method of sonication-assisted Agrobacterium-mediated transformation of chickpeas. Plant Cell Tissue Organ Cult 93:65–71

    Article  Google Scholar 

  • Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72

    Article  CAS  Google Scholar 

  • Rao KS, Sreevathsa R, Sharma PD, Keshamma E, Udaya KM (2008) In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro. Physiol Mol Biol Plant 14:321–328

    Article  CAS  Google Scholar 

  • Rohini VK, Rao KS (2000) Transformation of peanut (Arachis hypogaea L.): a non tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49

    Article  CAS  Google Scholar 

  • Sangwan RS, Bourgeois Y, Sangwan-Norreel BS (1991) Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency. Mol Gen Genet 230:475–485

    Article  PubMed  CAS  Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Noreel BS (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    Article  CAS  Google Scholar 

  • Santarém ER, Trick HN, Essig JS, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    Article  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Article  CAS  Google Scholar 

  • Seol E, Jung Y, Lee J, Cho C, Kim T, Rhee Y, Lee S (2008) In planta transformation of Notocactus scopa cv. Soonjung by Agrobacterium tumefaciens. Plant Cell Rep 27:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Smith RH, Hood EE (1995) Review and interpretation: Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Article  Google Scholar 

  • Solís JIF, Mlejnek P, Studená K, Procházka S (2003) Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum L. Plant Soil Environ 49(6):255–260

    Google Scholar 

  • Spolaore S, Trainotti L, Casadoro G (2001) A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. J Exp Bot 52:845–850

    PubMed  CAS  Google Scholar 

  • Sreeramanan M, Maziah M, Abdullah MP, Rosli NM, Xavier R (2006) Potential selectable marker for genetic transformation in banana. Biotechnology 5:189–197

    Article  Google Scholar 

  • Sriskandarajah S, Goodwin P (1998) Conditioning promotes regeneration and transformation in apple leaf explants. Plant Cell Tissue Organ Cult 53:1–11

    Article  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski PC (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30:425–436

    Article  PubMed  CAS  Google Scholar 

  • Supartana P, Shimizu T, Shioiri H, Nogawa M, Nozue M, Kojima M (2005) Development of simple and efficient in planta transformation method for rice (Oryza zativa L.) using Agrobacterium tumefaciens. J Biosci Bioeng 100:391–397

    Article  PubMed  CAS  Google Scholar 

  • Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M (2006) Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 100:391–397

    Article  CAS  Google Scholar 

  • Suprasanna P, Patade VY, Desai NS, Devarumath RM, Kawar PG, Pagariya MC, Ganapathi A, Manickavasagam M, Babu KH (2011) Biotechnological developments in sugarcane improvement: an overview. Sugar Tech 13(4):322–335

    Article  CAS  Google Scholar 

  • Tachibana K, Watanabe T, Sekizawa T, Takematsu T (1986) Action mechanism of bialaphos II: accumulation of ammonia in plants treated with bialaphos. J Pest Sci 11:33–37

    Article  CAS  Google Scholar 

  • Tague BW, Mantis J (2006) In planta Agrobacterium-mediated transformation by vacuum infiltration. Methods Mol Biol 323:215–223

    PubMed  Google Scholar 

  • TianZi C, ShenJie Wu, Jun Z, WangZhen G, TianZhen Z (2010) Pistil drip following pollination: a simple in planta Agrobacterium-mediated transformation in cotton. Biotechnol Lett 32:547–555

    Article  PubMed  CAS  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–337

    Article  CAS  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541

    Article  PubMed  CAS  Google Scholar 

  • Trifonova A, Madsen S, Olesen A (2001) Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci 161:871–880

    Article  CAS  Google Scholar 

  • Valdez-Ortiz A, Medina-Godoy S, Elena Valverde M, Paredes-Lόpez O (2007) A transgenic tropical maize line generated by the direct transformation of the embryo-scutellum by A. tumefaciens. Plant Cell Tissue Organ Cult 91:201–214

    Article  Google Scholar 

  • Vasil V, Castillo AM, Fromm EM, Vasil IK (1992) Herbicide resistant transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674

    Article  CAS  Google Scholar 

  • Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17(4):587–597

    Article  PubMed  CAS  Google Scholar 

  • Weng LX, Deng HH, Xu JL, Li Q, Zhang YQ, Jiang ZD, Li QW, Chen JW, Zhang LH (2011) Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgenic Res 20:759–772

    Article  PubMed  CAS  Google Scholar 

  • Wu LG, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotech J 51:109–117

    Article  CAS  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    PubMed  CAS  Google Scholar 

  • Yasmeen A, Mirza B, Inayatullah S, Safdar N, Jamil M, Ali S, Choudhry MF (2009) In planta transformation of tomato. Plant Mol Biol Rep 27(1):20–28

    Article  CAS  Google Scholar 

  • Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024

    Article  PubMed  CAS  Google Scholar 

  • Zhangsun DT, Luo SL, Chen RK, Tang KX (2007) Improved Agrobacterium-mediated genetic transformation of GNA transgenic sugarcane. Biologia 62(4):386–393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University Grants Commission (UGC), Government of India, for the financial support [No.F. 2-3/2011 (Policy/SR)] to carry out the present work. The corresponding author is thankful to University Grants Commission (UGC), Govt. of India, for providing fellowship under UGC-BSR scheme. Subramanyam and Sivanadhan are thankful to the Council of Scientific and Industrial Research (CSIR), Govt. Of India, for the award of Senior Research Fellowship (SRF) for their doctoral research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Ganapathi.

Additional information

Communicated by P. Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayavan, S., Subramanyam, K., Arun, M. et al. Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32, 1557–1574 (2013). https://doi.org/10.1007/s00299-013-1467-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1467-5

Keywords

Navigation