Skip to main content
Log in

A chloroplast membrane protein LTO1/AtVKOR involving in redox regulation and ROS homeostasis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The role of LTO1/ At VKOR-DsbA in ROS homeostasis and in redox regulation of cysteine-containing proteins in chloroplast was studied in lto1 - 2 mutant, and a potential target of LTO1 was captured.

Abstract

A chloroplast membrane protein LTO1/AtVKOR-DsbA encoded by the gene At4g35760 was recently found to be an oxidoreductase and involved in assembly of PSII. Here, the growth of a mutant lto1-2 line of Arabidopsis was found to be severely stunted and transgenic complementation ultimately demonstrated the phenotype changes were due to this gene. A proteomic experiment identified 23 proteins presenting a differential abundance in lto1-2 compared with wild-type plants, including components in PSII and proteins scavenging active oxygen. Three scavengers of active oxygen, l-ascorbate peroxidase 1, peroxisomal catalase 2, dehydroascorbate reductase 1, are reduced in lto1-2 plants, corresponding to high levels of accumulation of reactive oxygen species (ROS). The photosynthetic activities of PSII and the quantity of core protein D1 decreased significantly in lto1-2. Further investigation showed the synthesis of D1 was not affected in mutants both at transcription and translation levels. The soluble DsbA-like domain of LTO1 was found to have reduction, oxidation and isomerization activities, and could promote the formation of disulfide bonds in a lumenal protein, FKBP13. A potential target of LTO1 was captured which was involving in chlorophyll degradation and photooxidative stress response. Experimental results imply that LTO1 plays important roles in redox regulation, ROS homeostasis and maintenance of PSII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akiyama Y, Kamitani S, Kusukawa N, Ito K (1992) In vitro catalysis of oxidative folding of disulfide-bonded proteins by the Escherichia coli dsbA (ppfA) gene product. J Biol Chem 267:22440–22445

    PubMed  CAS  Google Scholar 

  • Armbruster U, Zuhlke J, Rengstl B, Kreller R, Makarenko E, Ruhle T, Schunemann D, Jahns P, Weisshaar B, Nickelsen J, Leister D (2010) The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. Plant Cell 22:3439–3460

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Aronsson H, Jarvis P (2002) A simple method for isolating import-competent Arabidopsis chloroplasts. FEBS Lett 529:215–220

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Bardwell JCA, McGovern K, Beckwith J (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67:581–589

    Article  PubMed  CAS  Google Scholar 

  • Barkan A (1988) Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs. EMBO J 7:2637–2644

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  PubMed  CAS  Google Scholar 

  • Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Cemazar M, Gruber CW, Craik DJ (2008) Oxidative folding of cyclic cystine knot proteins. Antioxid Redox Signal 10:103–111

    Article  PubMed  CAS  Google Scholar 

  • Chen G-X, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant and Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Choquet Y, Vallon O (2000) Synthesis, assembly and degradation of thylakoid membrane proteins. Biochimie 82:615–634

    Article  PubMed  CAS  Google Scholar 

  • Choquet Y, Wollman FA (2002) Translational regulations as specific traits of chloroplast gene expression. FEBS Lett 529:39–42

    Article  PubMed  CAS  Google Scholar 

  • Choquet Y, Stern DB, Wostrikoff K, Kuras R, Girard-Bascou J, Wollman FA (1998) Translation of cytochrome f is autoregulated through the 5′ untranslated region of petA mRNA in Chlamydomonas chloroplasts. Proc Natl Acad Sci U S A 95:4380–4385

    Article  PubMed  CAS  Google Scholar 

  • Crook EM, Mathias AP, Rabin BR (1960) Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2′:3′-phosphate. Biochem J 74:234–238

    PubMed  CAS  Google Scholar 

  • D’Andrea A, Pellman D (1998) Deubiquitinating enzymes: a new class of biological regulators. Crit Rev Biochem Mol Biol 33:337–352

    Article  PubMed  Google Scholar 

  • Dietz KJ, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485

    Article  PubMed  CAS  Google Scholar 

  • Doulis AG, Debian N, Kingston-Smith AH et al (1997) Differential localization of antioxidants in maize leaves. Plant Physiol 114:1031–1037

    PubMed  CAS  Google Scholar 

  • Dutton RJ, Boyd D, Berkmen M, Beckwith J (2008) Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc Natl Acad Sci U S A 105:11933–11938

    Article  PubMed  CAS  Google Scholar 

  • Feng WK, Wang L, Lu Y, Wang XY (2011) A protein oxidase catalysing disulfide bond formation is localized to the chloroplast thylakoids. FEBS J 278:3419–3430

    Article  PubMed  CAS  Google Scholar 

  • Furt F, Oostende C, Widhalm JR, Dale MA, Wertz J, Basset GJ (2010) A bimodular oxidoreductase mediates the specific reduction of phylloquinone (vitamin K) in chloroplasts. Plant J 64:38–46

    PubMed  CAS  Google Scholar 

  • Gao Y, Xiong W, Li XB, Gao CF, Zhang YL, Li H, Wu QY (2009) Identification of the proteomic changes in Synechocystis sp. PCC 6803 following prolonged UV-B irradiation. J Exp Bot 60:1141–1154

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi P, Bonetto V, Fratelli M (2005) Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 7:964–972

    Article  PubMed  CAS  Google Scholar 

  • Goodstadt L, Ponting CP (2004) Vitamin K epoxide reductase: homology, active site and catalytic mechanism. Trends Biochem Sci 29:289–292

    Article  PubMed  CAS  Google Scholar 

  • Gopalan G, He Z, Balmer Y, Romano P, Gupta R, Heroux A, Buchanan BB, Swaminathan K, Luan S (2004) Structural analysis uncovers a role for redox in regulating FKBP13, an immunophilin of the chloroplast thylakoid lumen. Proc Natl Acad Sci U S A 101:13945–13950

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Mould RM, He Z, Luan S (2002) A chloroplast FKBP interacts with and affects the accumulation of Rieske subunit of cytochrome bf complex. Proc Natl Acad Sci U S A 99:15806–15811

    Article  PubMed  CAS  Google Scholar 

  • Herrmann JM, Kauff F, Neuhaus HE (2009) Thiol oxidation in bacteria, mitochondria and chloroplasts: common principles but three unrelated machineries? Biochim Biophys Acta 1793:71–77

    Article  PubMed  CAS  Google Scholar 

  • Jasinski M, Sudre D, Schansker G, Schellenberg M, Constant S, Martinoia E, Bovet L (2008) AtOSA1, a member of the Abc1-like family, as a new factor in cadmium and oxidative stress response. Plant Physiol 147:719–731

    Article  PubMed  CAS  Google Scholar 

  • Jing XL, Fan MN, Jia G, Liu LW, Ma L, Zheng CC, Zhu XP, Liu HM, Wang XY (2011) A multifunctional protein encoded by turkey herpesvirus suppresses RNA silencing in Nicotiana benthamiana. J Virol 85:12792–12803

    Article  PubMed  CAS  Google Scholar 

  • Kadokura H, Katzen F, Beckwith J (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72:111–135

    Article  PubMed  CAS  Google Scholar 

  • Karamoko M, Cline S, Redding K, Ruiz N, Hamel PP (2011) Lumen Thiol Oxidoreductase1, a disulfide bond-forming catalyst, is required for the assembly of photosystem II in Arabidopsis. Plant Cell 23:4462–4475

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B et al (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    PubMed  CAS  Google Scholar 

  • Lemeille S, Willig A, Depege-Fargeix N, Delessert C, Bassi R, Rochaix JD (2009) Analysis of the chloroplast protein kinase Stt7 during state transitions. PLoS Biol 7:e45

    Article  PubMed  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  PubMed  CAS  Google Scholar 

  • Motohashi K, Hisabori T (2006) HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. J Biol Chem 281:35039–35047

    Article  PubMed  CAS  Google Scholar 

  • Motohashi K, Hisabori T (2010) CcdA is a thylakoid membrane protein required for the transfer of reducing equivalents from stroma to thylakoid lumen in the higher plant chloroplast. Antioxid Redox Signal 13:1169–1176

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Ma J, Chi W, Guo J, Zhu S, Lu Q, Lu C, Zhang L (2006) Low PSII accumulation1 is involved in efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell 18:955–969

    Article  PubMed  CAS  Google Scholar 

  • Pereira G, Molina S, Lea P, Azevedo R (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132

    Article  CAS  Google Scholar 

  • Pfannschmidt T, Schutze K, Fey V et al (2003) Chloroplast redox control of nuclear gene expression–a new class of plastid signals in interorganellar communication. Antioxid Redox Signal 5:95–101

    Article  PubMed  CAS  Google Scholar 

  • Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  PubMed  Google Scholar 

  • Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    Article  PubMed  CAS  Google Scholar 

  • Schulman S, Wang B, Li W, Rapoport TA (2010) Vitamin K epoxide reductase prefers ER membrane-anchored thioredoxin-like redox partners. Proc Natl Acad Sci U S A 107:15027–15032

    Article  PubMed  CAS  Google Scholar 

  • Schurmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1274

    Article  PubMed  CAS  Google Scholar 

  • Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3:836–847

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Bhattacharyya-Pakrasi M, Pakrasi HB (2008) Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms. J Biol Chem 283:15762–15770

    Article  PubMed  CAS  Google Scholar 

  • Wajih N, Hutson SM, Wallin R (2007) Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction. J Biol Chem 282:2626–2635

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Dutton RJ, Beckwith J, Boyd D (2011) Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase. Antioxid Redox Signal 14:1413–1420

    Article  PubMed  CAS  Google Scholar 

  • Westhofen P, Watzka M, Marinova M, Hass M, Kirfel G, Muller J, Bevans CG, Muller CR, Oldenburg J (2011) Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular antioxidant function. J Biol Chem 286:15085–15094

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg G, Danon A (2008) Disulfide bond formation in chloroplasts: formation of disulfide bonds in signaling chloroplast proteins. Plant Sci 175:459–466

    Article  CAS  Google Scholar 

  • Yamamoto HY, Kamite L (1972) The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta 267:538–543

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Zeng X, Li T, Liu M, Zhang S, Gao S, Wang Y, Peng C, Li L, Yang C (2012) AtACDO1, an ABC1-like kinase gene, is involved in chlorophyll degradation and the response to photooxidative stress in Arabidopsis. J Exp Bot 63:3959–3973

    Article  PubMed  CAS  Google Scholar 

  • Zhang LT, Zhang ZS, Gao HY, Meng XL, Yang C, Liu JG, Meng QW (2012) The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves. BMC Plant Biol 12:40–57

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by the State Key Basic Research and Development Plan of China (2009CB118505).

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yun Wang.

Additional information

Communicated by K. Chong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Wang, HR., Li, H. et al. A chloroplast membrane protein LTO1/AtVKOR involving in redox regulation and ROS homeostasis. Plant Cell Rep 32, 1427–1440 (2013). https://doi.org/10.1007/s00299-013-1455-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1455-9

Keywords

Navigation