Skip to main content
Log in

Ectopic expression of bacterial amylopullulanase enhances bioethanol production from maize grain

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Heterologous expression of amylopullulanase in maize seeds leads to partial starch degradation into fermentable sugars, which enhances direct bioethanol production from maize grain.

Abstract

Utilization of maize in bioethanol industry in the United States reached ±13.3 billion gallons in 2012, most of which was derived from maize grain. Starch hydrolysis for bioethanol industry requires the addition of thermostable alpha amylase and amyloglucosidase (AMG) enzymes to break down the α-1,4 and α-1,6 glucosidic bonds of starch that limits the cost effectiveness of the process on an industrial scale due to its high cost. Transgenic plants expressing a thermostable starch-degrading enzyme can overcome this problem by omitting the addition of exogenous enzymes during the starch hydrolysis process. In this study, we generated transgenic maize plants expressing an amylopullulanase (APU) enzyme from the bacterium Thermoanaerobacter thermohydrosulfuricus. A truncated version of the dual functional APU (TrAPU) that possesses both alpha amylase and pullulanase activities was produced in maize endosperm tissue using a seed-specific promoter of 27-kD gamma zein. A number of analyses were performed at 85 °C, a temperature typically used for starch processing. Firstly, enzymatic assay and thin layer chromatography analysis showed direct starch hydrolysis into glucose. In addition, scanning electron microscopy illustrated porous and broken granules, suggesting starch autohydrolysis. Finally, bioethanol assay demonstrated that a 40.2 ± 2.63 % (14.7 ± 0.90 g ethanol per 100 g seed) maize starch to ethanol conversion was achieved from the TrAPU seeds. Conversion efficiency was improved to reach 90.5 % (33.1 ± 0.66 g ethanol per 100 g seed) when commercial amyloglucosidase was added after direct hydrolysis of TrAPU maize seeds. Our results provide evidence that enzymes for starch hydrolysis can be produced in maize seeds to enhance bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anonymous (2013) Ethanol industry outlook 2012. Renewable Fuels Association, Washington, DC

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282

    Article  CAS  Google Scholar 

  • Bialas W, Szymanowska D, Grajek W (2010) Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling. Bioresour Technol 101(9):3126–3131

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brunecky R, Selig MJ, Vinzant TB, Himmel ME, Lee D, Blaylock MJ, Decker SR (2011) In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnol Biofuels 4(1):1

    Article  PubMed  CAS  Google Scholar 

  • Campbell WH, Gowri G (1990) Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol 92(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Castro AM, Castilho LR, Freire DMG (2011) An overview on advances of amylases production and their use in the production of bioethanol by conventional and non-conventional processes. Biomass Convers Biorefinery 1(4):245–255

    Article  CAS  Google Scholar 

  • Chiang C-M, Yeh F-S, Huang L-F, Tseng T-H, Chung M-C, Wang C-S, Lur H-S, Shaw J-F, Yu S-M (2005) Expression of a bi-functional and thermostable amylopullulanase in transgenic rice seeds leads to autohydrolysis and altered composition of starch. Mol Breed 15(2):125–143

    Article  CAS  Google Scholar 

  • Chikwamba RK, Scott MP, Mejia LB, Mason HS, Wang K (2003) Localization of a bacterial protein in starch granules of transgenic maize kernels. Proc Natl Acad Sci USA 100(19):11127–11132

    Article  PubMed  CAS  Google Scholar 

  • Chung Y-L, Lai H-M (2006) Molecular and granular characteristics of corn starch modified by HCl–methanol at different temperatures. Carbohydr Polym 63(4):527–534

    Article  CAS  Google Scholar 

  • Crabb DW, Mitchinson C (1997) Enzymes involved in the processing of starch to sugars. Trends Biotechnol 15(9):349–352

    Article  CAS  Google Scholar 

  • Czihal A, Conrad B, Buchner P, Brevis R, Azim Farouk A, Manteuffel R, Adler K, Wobus U, Hofemeister J, Bäumlein H (1999) Gene farming in plants: expression of a heatstable bacillus amylase in transgenic legume seeds. J Plant Physiol 155(2):183–189

    Article  CAS  Google Scholar 

  • Einhauer A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49(1–3):455–465

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA 91(9):3490–3496

    Article  PubMed  CAS  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SE, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129(1):13–22

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22(7):346–353

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556

    Article  PubMed  Google Scholar 

  • Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol J 9(8):884–896

    Article  PubMed  CAS  Google Scholar 

  • Hatada Y, Igarashi K, Ozaki K, Ara K, Hitomi J, Kobayashi T, Kawai S, Watabe T, Ito S (1996) Amino acid sequence and molecular structure of an alkaline amylopullulanase from bacillus that hydrolyzes α-1,4 and α-1,6 linkages in polysaccharides at different active sites. J Biol Chem 271(39):24075–24083

    Article  PubMed  CAS  Google Scholar 

  • Heinonen J, Tamminen A, Uusitalo J, Sainio T (2012) Ethanol production from wood via concentrated acid hydrolysis, chromatographic separation, and fermentation. J Chem Technol Biotechnol 87(5):689–696

    Article  CAS  Google Scholar 

  • Hood EE, Bailey MR, Beifuss K, Magallanes-Lundback M, Horn ME, Callaway E, Drees C, Delaney DE, Clough R, Howard JA (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1(2):129–140

    Article  PubMed  CAS  Google Scholar 

  • Huang SL, Jao CL, Hsu KC (2009) Effects of hydrostatic pressure/heat combinations on water uptake and gelatinization characteristics of japonica rice grains: a kinetic study. J Food Sci 74(8):E442–E448

    Article  PubMed  CAS  Google Scholar 

  • Jane JL, Kasemsuwan T, Leas S, Zobel H, Robyt JF (1994) Anthology of starch granule morphology by scanning electron microscopy. Starch/Stärke 46(4):121–129

    Article  CAS  Google Scholar 

  • Kar S, Ray RC, Mohapatra UB (2008) Alpha-amylase production by Streptomyces erumpens MTCC 7317 in solid state fermentation using response surface methodology (RSM). Polish journal of microbiology/Polskie Towarzystwo Mikrobiologow = The Polish Society of Microbiologists 57 (4):289–296

    Google Scholar 

  • Knappik A, Pluckthun A (1994) An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments. Biotechniques 17(4):754–761

    PubMed  CAS  Google Scholar 

  • Kurland CG (1991) Codon bias and gene expression. FEBS Lett 285(2):165–169

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lanahan MB, Basu SS, Batie CJ, Chen W, Craig J, Kinkema M (2006) Self-processing plants and plant parts. US Patent 7,102,057

  • Li L, Jiang H, Campbell M, Blanco M, Jane JL (2008) Characterization of maize amylose-extender (ae) mutant starches. Part I: relationship between resistant starch contents and molecular structures. Carbohydr Polym 74(3):396–404

    Article  CAS  Google Scholar 

  • Lin HY, Chuang HH, Lin FP (2008) Biochemical characterization of engineered amylopullulanase from Thermoanaerobacter ethanolicus 39E-implicating the non-necessity of its 100 C-terminal amino acid residues. Extremophiles: life under extreme conditions 12(5):641–650

    Article  CAS  Google Scholar 

  • Marks MD, Lindell JS, Larkins BA (1985) Quantitative analysis of the accumulation of Zein mRNA during maize endosperm development. J Biol Chem 260(30):16445–16450

    PubMed  CAS  Google Scholar 

  • Mason HS, DeWald DB, Mullet JE (1993) Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5(3):241–251

    PubMed  CAS  Google Scholar 

  • Mathupala S, Saha BC, Zeikus JG (1990) Substrate competition and specificity at the active site of amylopullulanase from Clostridium thermohydrosulfuricum. Biochem Biophys Res Commun 166(1):126–132

    Article  PubMed  CAS  Google Scholar 

  • Mathupala S, Lowe S, Podkovyrov S, Zeikus J (1993) Sequencing of the amylopullulanase (apu) Gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis*. J Biol Chem 286(22):16332–16344

    Google Scholar 

  • Matsumoto N (1982) Industrialization of a noncooking system for alcoholic fermentation from grains. Agric Biol Chem 46(6):1549–1558

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Moeller L, Gan Q, Wang K (2009) A bacterial signal peptide is functional in plants and directs proteins to the secretory pathway. J Exp Bot 60(12):3337–3352

    Article  PubMed  CAS  Google Scholar 

  • Monjardino P, Smith AG, Jones RJ (2006) Zein transcription and endoreduplication in maize endosperm are differentially affected by heat stress. Crop Sci 46(6):2581–2589

    Article  CAS  Google Scholar 

  • Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48(5):899–907

    Article  PubMed  CAS  Google Scholar 

  • Muralikrishna G, Nirmala M (2005) Cereal α-amylases—an overview. Carbohydr Polym 60(2):163–173

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Naguleswaran S, Li J, Vasanthan T, Bressler D, Hoover R (2012) Amylolysis of large and small granules of native triticale, wheat and corn starches using a mixture of α-amylase and glucoamylase. Carbohydr Polym 88(3):864–874

    Article  CAS  Google Scholar 

  • Nisha M, Satyanarayana T (2012) Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification. Appl Microbiol Biotechnol 1–14

  • Nout MJR, Bartelt RJ (1998) Attraction of a flying nitidulid (Carpophilus humeralis) to volatiles produced by yeasts grown on sweet corn and a corn-based medium. J Chem Ecol 24:1217–1239

    Article  CAS  Google Scholar 

  • Park SH, Ransom C, Mei C, Sabzikar R, Qi C, Chundawat S, Dale B, Sticklen M (2011) The quest for alternatives to microbial cellulase mix production: corn stover-produced heterologous multi-cellulases readily deconstruct lignocellulosic biomass into fermentable sugars. J Chem Technol Biotechnol 86(5):633–641

    Article  CAS  Google Scholar 

  • Paz M, Shou H, Guo Z, Zhang Z, Banerjee A, Wang K (2004) Assessment of conditions affecting Agrobacterium -mediated soybean transformation using the cotyledonary node explant. Euphytica 136(2):167–179

    Article  CAS  Google Scholar 

  • Pen J, Molendijk L, Quax WJ, Sijmons PC, van Ooyen AJJ, van den Elzen PJM, Rietveld K, Hoekema A (1992) Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Nat Biotech 10(3):292–296

    Article  CAS  Google Scholar 

  • Peng RH, Yao QH, Xiong AS, Cheng ZM, Li Y (2006) Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep 25(2):124–132

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Carrillo E, Serna-Saldívar SO, Alvarez MM, Cortes-Callejas ML (2008) Effect of Sorghum decortication and use of protease before liquefaction with thermo resistant α-amylase on efficiency of bioethanol production. Cereal Chem J 85(6):792–798

    Article  Google Scholar 

  • Russell DA, Fromm ME (1997) Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Res 6(2):157–168

    Article  PubMed  CAS  Google Scholar 

  • Saha BC, Zeikus JG (1989) Microbial glucoamylase: biochemical and biotechnological features. Starch/Stärke 41(2):57–64

    Article  CAS  Google Scholar 

  • Saha BC, Lamed R, Lee CY, Mathupala SP, Zeikus JG (1990) Characterization of an endo-acting amylopullulanase from Thermoanaerobacter strain B6A. Appl Environ Microbiol 56(4):881–886

    PubMed  CAS  Google Scholar 

  • Saha BC, Mathupala SP, Zeikus JG (1991) Comparison of Amylopullulanase to α-Amylase and Pullulanase. In: Enzymes in Biomass Conversion, vol 460. ACS Symposium Series, vol 460. American Chemical Society, pp 362–371

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstock. Bioresour Technol 99(13):5270–5295

    Article  PubMed  CAS  Google Scholar 

  • Santa-Maria MC, Yencho CG, Haigler CH, Thompson WF, Kelly RM, Sosinski B (2011) Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic alpha-amylase. Biotechnol Prog 27(2):351–359

    Article  PubMed  CAS  Google Scholar 

  • Sata H, Umeda M, Kim C-H, Taniguchi H, Maruyama Y (1989) Amylase-pullulanase enzyme produced by B. circulans F-2. Biochimica et Biophysica Acta (BBA)—General Subjects 991 (3):388-394

  • Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24:777–784

    Article  PubMed  CAS  Google Scholar 

  • Shen GJ, Srivastava K, Saha B, Zeikus JG (1990) Physiological and enzymatic characterization of a novel pullulan-degrading thermophilic Bacillus strain 3183. Appl Microbiol Biotechnol 33(3):340–344

    Article  CAS  Google Scholar 

  • Shou H, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or agrobacterium -mediated transformation. Mol Breeding 13(2):201–208

    Article  CAS  Google Scholar 

  • Singh H, Soni SK (2001) Production of starch-gel digesting amyloglucosidase by Aspergillus oryzae HS-3 in solid state fermentation. Process Biochem 37(5):453–459

    Article  Google Scholar 

  • Spiegel H, Schillberg S, Sack M, Holzem A, Nähring J, Monecke M, Liao YC, Fischer R (1999) Accumulation of antibody fusion proteins in the cytoplasm and ER of plant cells. Plant Sci 149(1):63–71

    Article  CAS  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) Review article: the silence of genes in transgenic plants. Ann Bot 79(1):3–12

    Article  CAS  Google Scholar 

  • Tester RF, Morrison WR (1990) Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem 67(6):551–557

    CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–43

    Article  PubMed  CAS  Google Scholar 

  • Woo Y-M, Hu DWN, Larkins BA, Jung R (2001) Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell 13(10):2297–2317

    PubMed  CAS  Google Scholar 

  • Xu X, Fang J, Wang W, Guo J, Chen P, Cheng J, Shen Z (2008a) Expression of a bacterial alpha-amylase gene in transgenic rice seeds. Transgenic Res 17(4):645–650

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Huang J, Fang J, Lin C, Cheng J, Shen Z (2008b) Expression of a fungal glucoamylase in transgenic rice seeds. Protein Expr Purif 61(2):113–116

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Moran D, Jia HW, Bicar E, Lee M, Scott MP (2002) Expression of a synthetic porcine α-lactalbumin gene in the kernels of transgenic maize. Transgenic Res 11(1):11–20

    Article  PubMed  Google Scholar 

  • Yu SM, Shaw JF (2004) Transgenic seeds expressing amylopullulanase and uses therefor. US Patent 6,737,563

  • Zareian S, Khajeh K, Ranjbar B, Dabirmanesh B, Ghollasi M, Mollania N (2010) Purification and characterization of a novel amylopullulanase that converts pullulan to glucose, maltose, and maltotriose and starch to glucose and maltose. Enzyme Microb Technol 46(2):57–63

    Article  CAS  Google Scholar 

  • Zastrow CR, Hollatz C, de Araujo PS, Stambuk BU (2001) Maltotriose fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 27(1):34–38

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Zhang W, Lin C, Xu X, Shen Z (2012) Expression of an Acidothermus cellulolyticus endoglucanase in transgenic rice seeds. Protein Expr Purif 82(2):279–283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

HN and KW thank Rachel McCoy for technical assistance in molecular analysis, Su-May Yu for providing Thermoanaerobacter thermohydrosulfuricus amylopullulanase gene cassette, Neelakandan Anjanasree for useful research discussion, Theodore Bloechle for grammatical editing and Xing Xu for critical reading of the manuscript. Partial financial support for the project was provided by Charoen Pokphand Indonesia and Plant Sciences Institute of Iowa State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang.

Additional information

Communicated by V. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahampun, H.N., Lee, C.J., Jane, JL. et al. Ectopic expression of bacterial amylopullulanase enhances bioethanol production from maize grain. Plant Cell Rep 32, 1393–1405 (2013). https://doi.org/10.1007/s00299-013-1453-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1453-y

Keywords

Navigation