Skip to main content
Log in

Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species.

Abstract

Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-, α-tubulin and histone 3 in P. pinaster, and elongation factor-, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SE:

Somatic embryogenesis

qPCR:

Real-time quantitative PCR

C t :

Cycle threshold

ACT:

Actin

ATUB:

α-Tubulin

EF1:

Elongation factor-

AK:

Adenosine kinase

UBI:

Ubiquitin

HISTO3:

Histone 3

SAND:

SAND protein family

CAC:

Clathrin adaptor complex subunit

HEATS:

Heat shock protein

REDUC:

Ether reductase protein

V n :

Pairwise variation

L1L :

Leafy cotyledon 1-like

PpRab1 :

Pinus pinaster Rab GTPase

CTAB:

Hexadecyltrimethylammonium bromide

PVPP:

Polyvinylpyrrolidone

DEPC:

Diethylpyrocarbonate

References

  • Alonso P, Cortizo M, Cantón FR, Fernández B, Rodríguez A, Centeno ML, Cánovas FM, Ordás RJ (2007) Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR. Tree Physiol 27:1721–1730

    Article  PubMed  CAS  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Aquea F, Arce-Johnson P (2008) Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 46:559–568

    Article  PubMed  CAS  Google Scholar 

  • Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa M, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49

    Article  PubMed  Google Scholar 

  • Bishop-Hurley SL, Gardner RC, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tiss Organ Cult 74:267–281

    Article  CAS  Google Scholar 

  • Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, Cooke JEK, Blais S, Tremblay L, Morency M-J, Pavy N et al (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J Exp Bot 59:3925–3939

    Article  PubMed  CAS  Google Scholar 

  • Bonga JM, Klimaszewska KK, Aderkas P (2009) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tiss Organ Cult 100:241–254

    Article  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  PubMed  CAS  Google Scholar 

  • Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhong H-Y, Kuang J-F, Li J-G, Lu W-J, Chen J-Y (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377–390

    Article  PubMed  CAS  Google Scholar 

  • Clapham D, Newton R, Sen S, Von Arnold S (2000) Transformation of Picea species. In: Jain M, Minocha SC (eds) Molecular biology of woody plants, vol 2. Springer, Heidelberg, pp 105–110

    Chapter  Google Scholar 

  • Cruz F, Kalaoun S, Nobile P, Colombo C, Almeida J, Barros LMG, Romano E, Grossi-de-Sá MF, Vaslin M, Alves-Ferreira M (2009) Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Mol Breeding 23:607–616

    Article  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi M, Scheible W (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  Google Scholar 

  • de Almeida MR, Ruedell CM, Ricachenevsky FK, Sperotto RA, Pasquali G, Fett-Neto AG (2010) Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Mol Biol 11:73

    Article  PubMed  Google Scholar 

  • Dheda K, Huggett J, Bustin S, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–119

    PubMed  CAS  Google Scholar 

  • Die J, Román B, Nadal S, González-Verdejo C (2010) Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232:145–153

    Article  PubMed  CAS  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  PubMed  CAS  Google Scholar 

  • Expósito-Rodríguez M, Borges A, Borges-Pérez A, Pérez J (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  PubMed  Google Scholar 

  • Giménez MJ, Pistón F, Atienza SG (2011) Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta 233:163–173

    Article  PubMed  Google Scholar 

  • Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves S, Cairney J, Maroco J, Oliveira M, Miguel C (2005) Evaluation of control transcripts in real-time RT-PCR expression analysis during maritime pine embryogenesis. Planta 222:556–563

    Article  PubMed  Google Scholar 

  • Gonçalves S, Cairney J, Rodríguez MP, Cánovas F, Oliveira M, Miguel C (2007) PpRab1, a Rab GTPase from maritime pine is differentially expressed during embryogenesis. Mol Genet Genomics 278:273–282

    Article  PubMed  Google Scholar 

  • Harvengt L (2005) Somatic embryogenesis in maritime pine (Pinus pinaster Ait.). In: Jain SM, Gupta PK (eds) Protocol of somatic embryogenesis in woody plants, vol. 77. Springer Verlag, Berlin, pp 107–120

    Google Scholar 

  • Hellemans J, Mortier G, de Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284

    Article  PubMed  CAS  Google Scholar 

  • Huis R, Hawkins S, Neutelings G (2010) Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 10:71

    Article  PubMed  Google Scholar 

  • Humánez A, Blasco M, Brisa C, Segura J, Arrillaga I (2012) Somatic embryogenesis from different tissues of Spanish populations of maritime pine. Plant Cell Tiss Organ Cult 111:373–383

    Article  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  PubMed  CAS  Google Scholar 

  • Klimaszewska K, Lachance D, Pelletier G (2001a) Regeneration of transgenic Picea glauca, P. mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 37:748–755

    Article  CAS  Google Scholar 

  • Klimaszewska KK, Park YS, Overton C, MacEacheron I, Bonga JM (2001b) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol Plant 37:392–399

    Article  Google Scholar 

  • Lara-Chavez A, Egertsdotter U, Flinn BS (2012) Comparison of gene expression markers during zygotic and somatic embryogenesis in pine. In Vitro Cell Dev Biol Plant 48:341–354

    CAS  Google Scholar 

  • Li Q-F, Sun SSM, Yuan D-Y, Yu H-X, Gu M-H, Liu Q-Q (2010) Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development. Plant Mol Biol Rep 28:49–57

    Article  Google Scholar 

  • Lin Y, Lai Z (2010) Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci 178:359–365

    Article  CAS  Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328

    Article  CAS  Google Scholar 

  • Liu J-J, Zamani A, Ekramoddoullah AKM (2010) Expression profiling of a complex thaumatin-like protein family in western white pine. Planta 231:637–651

    Article  PubMed  CAS  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Marum L, Estêvão C, Oliveira MM, Amâncio S, Rodrigues L, Miguel C (2004) Recovery of cryopreserved embryogenic cultures of maritime pine: effect of cryoprotectant and suspension density. Cryo Lett 25:363–374

    CAS  Google Scholar 

  • Marum L, Rocheta M, Maroco J, Oliveira MM, Miguel C (2009) Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep 28:673–682

    Article  PubMed  CAS  Google Scholar 

  • Marum L, Miguel A, Ricardo CP, Miguel C (2012) Reference gene selection for quantitative real-time PCR normalization in Quercus suber. PLoS One 7:e35113

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW (1995) Molecular genetics of plant embryogenesis. Annu Rev Plant Physiol Plant Mol Biol 46:369–394

    Article  CAS  Google Scholar 

  • Miguel C, Gonçalves S, Tereso S, Marum L, Maroco J, Oliveira MM (2004) Somatic embryogenesis from 20 open-pollinated families of Portuguese plus trees of maritime pine. Plant Cell Tiss Org Cult 76:121–130

    Article  CAS  Google Scholar 

  • Nolan T, Bustin SA (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 15:155

    PubMed  Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  PubMed  CAS  Google Scholar 

  • Nordgård O, Kvaløy JT, Farmen RK, Heikkilä R (2006) Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision. Anal biochem 356:182–193

    Article  PubMed  Google Scholar 

  • Paim RM, Pereira MH, Di Ponzio R, Rodrigues JO, Guarneri AA, Gontijo NF, Araújo RN (2012) Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodnius prolixus (Hemiptera, Reduviidae) under different experimental conditions by quantitative real-time PCR. BMC Res Notes 5:128

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  PubMed  CAS  Google Scholar 

  • Ramakers C, Ruijter J, Deprez R, Moorman A (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  • Ratnaparkhe S, Egertsdotter E, Flinn B (2009) Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment. Planta 230:339–354

    Article  PubMed  CAS  Google Scholar 

  • Ruijter J, Ramakers C, Hoogaars W, Karlen Y, Bakker O, van den Hoff M, Moorman A (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):e45

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen T, Livak K (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  PubMed  CAS  Google Scholar 

  • Simões M, Lorenz WW, Alba R, Gonçalves S, Maroco J, Dean J, Miguel CM (2009) Embryogenesis in maritime pine: a transcriptomics approach. In: IUFRO tree biotechnology conference, Jun 28–Jul 2, Whistler, Canada (Poster)

  • Spencer MWB, Grene R, Lindsey K (2007) Transcriptional profiling of the Arabidopsis embryo. Plant Physiol 143:924–940

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Wang HHY, McCarty DR (2006) Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol 143:902–911

    Article  PubMed  Google Scholar 

  • Tereso S, Miguel C, Zoglauer K, Valle-Piquera C (2006) Stable Agrobacterium-mediated transformation of embryogenic tissues from Pinus pinaster Portuguese genotypes. Plant Growth Regul 50:57–68

    Article  CAS  Google Scholar 

  • Thellin O, ElMoualij B, Heinen E, Zorzi W (2009) A decade of improvements in quantification of gene expression and internal standard selection. Biotechnol Adv 27:323–333

    Article  PubMed  CAS  Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    Article  PubMed  Google Scholar 

  • Trontin J, Walter C, Klimaszewska K, Park Y, Lelu-Walter M (2007) Recent progress in genetic transformation of four Pinus spp. Transgenic Plant J 1:314–329

    Google Scholar 

  • Trontin JF, Debille S, Canlet F, Harvengt L, Lelu-Walter MA, Label P, Teyssier C, Lesage-Descauses MC, Le Metté C, Miguel C et al (2013) Somatic embryogenesis as an effective regeneration support for reverse genetics in maritime pine: the Sustainpine collaborative project as a case study. In: Proceedings of the IUFRO Working Party 2.09.02, integrating vegetative propagation, biotechnology and genetic improvement for tree production and sustainable forest management

  • Tu L, Zhang X, Liu D, Jin S, Cao J, Zhu L, Deng F, Tan J, Zhang C (2007) Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Chin Sci Bull 52:3110–3117

    Article  CAS  Google Scholar 

  • Uddenberg D, Valladares S, Abrahamsson M, Sundström JF, Sundås-Larsson A, von Arnold S (2011) Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta 234:527–539

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, de Preter K, Pattyn F, Poppe B, van Roy N, de Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034

    Article  PubMed  Google Scholar 

  • Vandesompele J, Kubista M, Pfaffl M (2009) Reference gene validation software for improved normalization. In: Logan J, Edwards K, Saunders N (eds) Real-time PCR: current technology and applications. Caister Academic Press, London, pp 47–64

  • Vásquez-Robinet C, Watkinson JI, Sioson AA, Ramakrishnan N, Heath LS, Grene R (2010) Differential expression of heat shock protein genes in preconditioning for photosynthetic acclimation in water-stressed loblolly pine. Plant Physiol Biochem 48:256–264

    Article  PubMed  Google Scholar 

  • Vestman D, Larsson E, Uddenberg D, Cairney J, Clapham D, Sundberg E, von Arnold S (2011) Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet Genomes 7:347–362

    Article  Google Scholar 

  • von Arnold S, Clapham D (2008) Spruce embryogenesis. In: Suarez MF, Bozhkov PV (eds) Plant embryogenesis methods in molecular biology. Humana, Totowa, pp 31–47

    Chapter  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Organ Cult 69:233–249

    Article  Google Scholar 

  • von Arnold S, Bozhkov P, Clapham D, Dyachok J, Filonova L, Hogberg K-A, Ingouff M, Wiweger M (2005) Propagation of Norway spruce via somatic embryogenesis. Plant Cell Tiss Organ Cult 81:323–329

    Article  Google Scholar 

  • West M, Harada JJ (1993) Embryogenesis in higher plants: an overview. Plant Cell Online 5:1361–1369

    Google Scholar 

  • Xu M, Zhang B, Su X, Zhang S, Huang M (2011) Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Anal Biochem 408:337–339

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Yuan F, Long G, Qin L, Deng Z (2012) Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol Biol Rep 39:1831–1838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Fundação para a Ciência e Tecnologia (FCT, Portugal) through projects PTDC/AGR-GPL/102877/2008, P-KBBE/AGR-GPL/0001/2009 and grant SFRH/BD/32037/2006 (MS). The authors acknowledge Prof. Sara von Arnold and Dr. David Clapham (SLU, Uppsala, Sweden) for providing the Picea embryogenic cell line used in these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia M. Miguel.

Additional information

Communicated by J. Bennett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vega-Bartol, J.J., Santos, R.R., Simões, M. et al. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies . Plant Cell Rep 32, 715–729 (2013). https://doi.org/10.1007/s00299-013-1407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1407-4

Keywords

Navigation