Skip to main content

Advertisement

Log in

Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Apple acetolactate synthase mutants were generated by site-specific mutagenesis and successfully used as selection marker in tobacco and apple transformation. T-DNA/Apple genome junctions were analysed using genome-walking PCR and sequencing.

Abstract

An Agrobacterium-mediated genetic transformation system was developed for apple (Malus × domestica), using mutants of apple acetolactate synthase (ALS) as a selectable marker. Four apple ALS mutants were generated by site-specific mutagenesis and subsequently cloned under the transcriptional control of the CaMV 35S promoter and ocs 3′ terminator, in a pART27-derived plant transformation vector. Three of the four mutations were found to confer resistance to the herbicide Glean®, containing the active agent chlorsulfuron, in tobacco (Nicotiana tabacum) transformation. In apple transformation, leaf explants infected with Agrobacterium tumefaciens EHA105 containing one of the three ALS mutants resulted in the production of shoots on medium containing 2–8 μg L−1 Glean®, whilst uninfected wild-type explants failed to regenerate shoots or survive on medium containing 1 and 3 μg L−1 Glean®, respectively. Glean®-resistant, regenerated shoots were further multiplied and rooted on medium containing 10 μg L−1 Glean®. The T-DNA and apple genome-DNA junctions from eight rooted transgenic apple plants were analysed using genome-walking PCR amplification and sequencing. This analysis confirmed T-DNA integration into the apple genome, identified the genome integration sites and revealed the extent of any vector backbone integration, T-DNA rearrangements and deletions of apple genome DNA at the sites of integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

BAP:

6-Benzylaminopurine

CaMV:

Cauliflower mosaic virus

IBA:

Indole-3-butyric acid

MS:

Murashige and Skoog

TDZ:

Thidiazuron

NAA:

α-Naphthylacetic acid

References

  • Abdal-Aziz SA, Pliego-Alfaro F, Quesada MA, Mercado JA (2006) Evidence of frequent integration of non-T-DNA vector backbone sequences in transgenic strawberry plant. J Biosci Bioeng 101:508–510

    Article  PubMed  CAS  Google Scholar 

  • Albright LM, Yanofsky MF, Leroux B, Ma D, Nester EW (1987) Processing of the DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J Bacteriol 169:1046–1055

    PubMed  CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    Article  PubMed  CAS  Google Scholar 

  • Bharathi Y, Kumar SV, Pasalu IC, Balachandran SM, Reddy VD, Rao KV (2011) Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests. J Biotechnol 152:63–71

    Article  PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Wong K, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    Article  PubMed  CAS  Google Scholar 

  • Brasileiro ACM, Tourneur C, Leple JC, Combes V, Jouanin L (1992) Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants. Transgenic Res 1:133–141

    Article  CAS  Google Scholar 

  • Chang AK, Duggleby RG (1998) Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J (Lond) 333:765–777

    CAS  Google Scholar 

  • Clark KA, Krysan PJ (2010) Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J 64:990–1001

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ (1999) Public concerns over transgenic crops. Genome Res 9:1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 13:373–384

    Article  CAS  Google Scholar 

  • De Bondt A, Eggermont K, Penninckx I, Goderis I, Broekaert WF (1996) Agrobacterium-mediated transformation of apple (Malus × domestica Borkh.): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep 15:549–554

    Article  Google Scholar 

  • Degenhardt J, Szankowski I (2006) Transformation of apple (Malus domestica Borkh.) using the phosphomannose isomerase gene as a selectable marker. In: Fari MG, Holb I, Bisztray GD (eds) Acta Horticulturae, pp 811–814

  • Drummond RSM, Martinez-Sanchez NM, Janssen BJ, Templeton KR, Simons JL, Quinn BD, Karunairetnam S, Snowden KC (2009) Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiol 151:1867–1877

    Article  PubMed  CAS  Google Scholar 

  • Duan X, Song Y, Yang A, Zhang J (2009) The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX1. Physiol Plant 135:281–295

    Article  PubMed  CAS  Google Scholar 

  • Duggleby RG, McCourt JA, Guddat LW (2008) Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem 46:309–324

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Brendolise C, Chagne D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  PubMed  CAS  Google Scholar 

  • Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52:161–176

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima1 K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Google Scholar 

  • Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  PubMed  CAS  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BAM (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  PubMed  CAS  Google Scholar 

  • Halpin C, Barakate A, Askari BM, Abbott JC, Ryan MD (2001) Enabling technologies for manipulating multiple genes on complex pathways. Plant Mol Biol 47:295–310

    Article  PubMed  CAS  Google Scholar 

  • Haughn GW, Smith J, Mazur B, Somerville C (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211:266–271

    Article  CAS  Google Scholar 

  • Holefors A, Xue Z, Welander M (1998) Transformation of the apple rootstock M26 with the rolA gene and its influence on growth. Plant Sci (Limerick) 136:69–78

    Article  CAS  Google Scholar 

  • Jacobsen E, Schouten HJ (2007) Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotechnol 25:219–223

    Article  PubMed  CAS  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ, Bevan M (1989) Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep 7:658–661

    CAS  Google Scholar 

  • James DJ, Passey AJ, Webster AD, Barbara DJ, Dandekar AM, Uratsu SL, Viss P (1993) Transgenic apples and strawberries: advances in transformation, introduction of genes for insect resistance and field studies of tissue cultured plants. Acta Hortic, In, pp 179–184

    Google Scholar 

  • Kawai K, Kaku K, Izawa N, Sinmizu T, Fukuda A, Tanaka Y (2008) A novel mutant acetolactate synthase gene from rice cells, which confers resistance to ALS-inhibiting herbicides. J Pestic Sci 33:278–280

    Article  Google Scholar 

  • Kolkman JM, Slabaugh MB, Bruniard JM, Berry S, Bushman BS, Olungu C, Maes N, Abratti G, Zambelli A, Miller JF, Leon A, Knapp SJ (2004) Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor Appl Genet 109:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Nemeth K, Redei GP, Schell J (1994) Homology recognition during T-DNA integration into the plant genome. In: Paszkowski J (ed) Homologous Recombination and Gene Silencing in Plants. Springer, pp 167–189

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Townsend J, Tepperman J, Black M, Chui CF, Mazur B, Dunsmuir P, Bedbrook J (1988) The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J 7:1241–1248

    PubMed  CAS  Google Scholar 

  • Lee Y, Chang AK, Duggleby RG (1999) Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett 452:341–345

    Article  PubMed  CAS  Google Scholar 

  • Li ZJ, Hayashimoto A, Murai N (1992) A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selectable marker for production of fertile transgenic rice plants. Plant Physiol 100:662–668

    Article  PubMed  CAS  Google Scholar 

  • Malnoy M, Boresjza-Wysocka EE, Norelli JL, Flaishman MA, Gidoni D, Aldwinckle HS (2010) Genetic transformation of apple (Malus × domestica) without use of a selectable marker gene. Tree Genet Genomes 6:423–433

    Article  Google Scholar 

  • Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao J, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res 12:671–681

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Ito Y, Hosoi T, Takahashi Y, Machida Y (1990) Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet 224:309–316

    Article  PubMed  CAS  Google Scholar 

  • McCourt JA, Duggleby RG (2006) Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31:173–210

    Article  PubMed  CAS  Google Scholar 

  • Meenakshi M, Singh AK, Indraneel S, Illimar A, Amla DV (2011) Pyramiding of modified cry1ab and cry1ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182:87–102

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Bhawana N, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  Google Scholar 

  • Norelli JL, Aldwinckle HS, Destefano-Beltran L, Jaynes JM (1994) Transgenic ‘Malling 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77:123–128

    Article  CAS  Google Scholar 

  • Okuzaki A, Shimizu T, Kaku K, Kawai K, Toriyama K (2007) A novel mutated acetolactate synthase gene conferring specific resistance to pyrimidinyl carboxy herbicides in rice. Plant Mol Biol 64:219–224

    Article  PubMed  CAS  Google Scholar 

  • Osakabe K, Endo M, Kawai K, Nishizawa Y, Ono K, Abe K, Ishikawa Y, Nakamura H, Ichikawa H, Nishimura S, Shimizu T, Toki S (2005) The mutant form of acetolactate synthase genomic DNA from rice is an efficient selectable marker for genetic transformation. Mol Breed 16:313–320

    Article  CAS  Google Scholar 

  • Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9:457–464

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM (2007) Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering. J Agric Food Chem 55:4281–4288

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403

    Article  PubMed  CAS  Google Scholar 

  • Rosellini D (2011) Selectable marker genes from plants: reliability and potential. In Vitro Cell Dev Biol Plant 47:222–233

    Article  CAS  Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao J, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912

    Article  PubMed  CAS  Google Scholar 

  • Shammi B, Gopaljee J (2010) Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep 29:1215–1225

    Article  Google Scholar 

  • Sriskandarajah S, Goodwin PB, Speirs J (1994) Genetic transformation of the apple scion cultivar ‘Delicious’ via Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 36:317–329

    Article  Google Scholar 

  • Tan S, Evans R, Singh B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30:195–204

    Article  PubMed  CAS  Google Scholar 

  • Thomas CM, Jones JDG (2007) Molecular analysis of Agrobacterium T-DNA integration in tomato reveals a role for left border sequence homology in most integration events. Mol Genet Genomics 278:411–420

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Li JX, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–383

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • WHO (2012) 20 Questions on genetically modified (GM) foods. In: http://wwwwhoint/foodsafety/publications/biotech/20questions/en/. World Health Organization

  • Windels P, De Buck S, Van Bockstaele E, De Loose M, Depicker A (2003) T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Physiol 133:2061–2068

    Article  PubMed  CAS  Google Scholar 

  • Yao JL, Cohen D, Atkinson R, Richardson K, Morris B (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep 14:407–412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Sakuntala Karunairetnam for providing plasmid pSAK778, Bhawana Nain for sequencing ALS mutants, Nihal de Silva for advice in statistical analysis, Tim Holmes for photographing apple transgenic plants and Charles Ampomah-Dwamena, Mary Christey, Sue Gardiner and Anne Gunson for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Long Yao.

Additional information

Communicated by S. Merkle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, JL., Tomes, S. & Gleave, A.P. Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites. Plant Cell Rep 32, 703–714 (2013). https://doi.org/10.1007/s00299-013-1404-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1404-7

Keywords