Skip to main content
Log in

Expression patterns of an isoflavone reductase-like gene and its possible roles in secondary metabolism in Ginkgo biloba

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Our results showed that GbIRL1 belongs to the PCBER protein family. Besides, IRL1 gene was a novel gene regulating lignin change and also effecting the accumulation of flavonoids in Ginkgo.

Abstract

A cDNA encoding the IFR-like protein was isolated from the leaves of Ginkgo biloba L., designated as GbIRL1 (Accession no. KC244282). The cDNA of GbIRL1 was 1,203 bp containing a 921 bp open reading frame encoding a polypeptide of 306 amino acids. Comparative and bioinformatic analyses revealed that GbIRL1 showed extensive homology with IFLs from other gymnosperm species. Phylogenetic tree analysis revealed that GbIRL1 shared the same ancestor in evolution with other PCBERs protein and had a further relationship with other gymnosperm species. The recombinant protein was successfully expressed in E. coli strain with pET-28a vector. The vitro enzyme activity assay by HPLC indicated that recombinant GbIRL1 protein could catalyze the formation the TDDC, IDDDC from DDDC, DDC. Tissue expression pattern analysis showed that GbIRL1 was constitutively expressed in stem and roots, especially in the parts of the pest and fungal infection, with the lower expression being found in 1- or 2-year old stem. The increased expression of GbIRL1 was detected when the seedlings were treated with Ultraviole-B, ALA, wounding and ethephon, abscisic acid, salicylic acid. Correlation analysis between GbIRL1 activity and flavonoid accumulation during Ginkgo leaf growth indicated that GbIRL1 might be the rate-limiting enzyme in the biosynthesis pathway of flavonoids in Ginkgo leaves. Results of RT-PCR analysis showed that the transcription level of change in GbIRL1 power correlated with flavonoid contents, suggesting IRL1 gene as a novel gene regulating lignin change and also effecting the accumulation of flavonoids in Ginkgo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

bp:

Base pair

HPLC:

High performance liquid chromatography

IPTG:

Isopropyl b-d-thiogalactoside, C9H18O5S

IFR:

Isoflavone reductase

IRL:

Isoflavone reductase-like protein

IRLP:

IRLgene promoter

ORF:

Open reading frame

PCBER:

Phenylcoumaran benzylic ether reductases

PCR:

Polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

QRT-PCR:

Real-time quantitative PCR

SD:

Standard deviation

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

UV:

Ultraviolet

References

  • Ardi R, Kobiler I, Jacoby B, Keen N, Prusky D (1998) Involvement of epicatechin biosynthesis in the activation of the mechanism of resistance of avocado fruits to Colletotrichum gloeosporioides. Physiol Mol Plant P 53(5–6):269–285

    Article  CAS  Google Scholar 

  • Bashandy T, Taconnat L, Renou JP, Meyer Y, Reichheld JP (2009) Accumulation of flavonoids in an ntra ntrb mutant leads to tolerance to UV-C. Mol Plant 2(2):249–258

    Article  PubMed  CAS  Google Scholar 

  • Brandalise M, Severino FE, Maluf MP, Maia IG (2009) The promoter of a gene encoding an isoflavone reductase-like protein in coffee (Coffea arabica) drives a stress-responsive expression in leaves. Plant Cell Rep 28(11):1699–1708

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Wang Y, Fei Y, Zhu G (2004) Studies on the effects of different treatments on flavonoids contents in Ginkgo biloba leaves and their regulating mechanism. J Fruit Sci 21(2):116–119 (in Chinese)

    Google Scholar 

  • Cheng S, Wang Y, Liu W, Chen K (2005) Effects of plant growth regulators on phenylalanine ammonia-lyase activities in leaves of Ginkgo biloba in vitro. J Plant Resour Environ 14(1):20–22 (in Chinese)

    CAS  Google Scholar 

  • Cheng H, Li L, Cheng S, Cao F, Wang Y, Yuan H (2011) Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Rep 30(1):49–62

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996) (+)-pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. J Biol Chem 271(46):29473–29482

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci 4(10):394–400

    Article  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18(17):4689–4699

    Article  PubMed  CAS  Google Scholar 

  • Ferrer JL, Austin M, Stewart C Jr, Noel J (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Bioch 46(3):356–370

    Article  CAS  Google Scholar 

  • Fofana B, McNally DJ, Labbé C, Boulanger R, Benhamou N, Séguin A, Bélanger RR (2002) Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiol Mol Plant P 61(2):121–132

    CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261(5122):754–756

    Article  PubMed  CAS  Google Scholar 

  • Gang DR, Kasahara H, Xia ZQ, Vander Mijnsbrugge K, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms: relationships of phenylcoumaran benzylic ether reductases to pinoresinol lariciresinol and isoflavone reductases. J Biol Chem 274(11):7516–7527

    Article  PubMed  CAS  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141(2):341–345

    Article  PubMed  CAS  Google Scholar 

  • Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo RRJ, Mesnard F, Lamblin F, Lainé E (2006) Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224(6):1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290(5499):2110–2113

    Article  PubMed  CAS  Google Scholar 

  • Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological role in plants, Springer publication, Netherlands, pp 1–14

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997) Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul 22(2):109–114

    Article  CAS  Google Scholar 

  • Jansson S, Meyer-Gauen G, Cerff R, Martin W (1994) Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. J Mol Evol 39(1):34–46

    Article  PubMed  Google Scholar 

  • Karamloo F, Wangorsch A, Kasahara H, Davin LB, Haustein D, Lewis NG, Vieths S (2001) Phenylcoumaran benzylic ether and isoflavonoid reductases are a new class of cross-reactive allergens in birch pollen, fruits and vegetables. Eur J Biochem 268(20):5310–5320

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Cho KS, Kim SG, Kang SY, Kang KY (2003) A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol Cells 16(2):224–231

    PubMed  CAS  Google Scholar 

  • Kim SG, Kim ST, Wang Y, Kim SK, Lee CH, Kim KK, Kim JK, Lee SY, Kang KY (2010) Overexpression of rice isoflavone reductase-like gene (OsIRL) confers tolerance to reactive oxygen species. Physiol Plantarum 138(1):1–9

    Article  CAS  Google Scholar 

  • Kirk TK, Obst JR (1988) Lignin determination. Method Enzymol 161(5):87–101

    Article  CAS  Google Scholar 

  • Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12(2):857–872

    Article  PubMed  CAS  Google Scholar 

  • Kush A, Goyvaerts E, Chye ML, Chua NH (1990) Laticifer-specific gene expression in Hevea brasiliensis (rubber tree). Proc Natl Acad Sci USA 87(5):1787

    Article  PubMed  CAS  Google Scholar 

  • Lers A, Burd S, Lomaniec E, Droby S, Chalutz E (1998) The expression of a grapefruit gene encoding an isoflavone reductase-like protein is induced in response to UV irradiation. Plant Mol Biol 36(6):847–856

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Liu Y, An J, Hu H, Peng S (2010) Isolation of a cinnamoyl CoA reductase gene involved in formation of stone cells in pear (Pyrus pyrifolia). Acta Physiol Plant 10(7):1–7

    Google Scholar 

  • Lütcke H, Chow K, Mickel F, Moss K, Kern H, Scheele G (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6(1):43–49

    PubMed  Google Scholar 

  • Meer I, Stuitje A, Mol J, Verma D (1993) Control of plant gene expression: regulation of general phenylpropanoid and flavonoid gene expression, CAB Direct, United Kingdom, pp 125–155

  • Min T, Kasahara H, Bedgar DL, Youn B, Lawrence PK, Gang DR, Halls SC, Park HJ, Hilsenbeck JL, Davin LB (2003) Crystal structures of pinoresinol–lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J Biol Chem 278(50):50714–50723

    Article  PubMed  CAS  Google Scholar 

  • Nam MH, Heo EJ, Kim JY, Kim SI, Kwon KH, Seo JB, Kwon O, Yoo JS, Park YM (2003) Proteome analysis of the responses of Panax ginseng CA Meyer leaves to high light: use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag data. Proteomics 3(12):2351–2367

    Article  PubMed  CAS  Google Scholar 

  • Nishihara E, Takahashi K, Nakata N, Tanaka K, Watanabe K (2001) Effect of 5-aminolevulinic acid (ALA) on photosynthetic rate, hydrogen peroxide content, antioxidant level and active oxygen-scavenging enzymes in spinach (Spinacia oleracea L.). J Jpn Soc Hortic Sci 70(3):346–352

    Article  CAS  Google Scholar 

  • Nishihara E, Kondo K, Parvez MM, Takahashi K, Watanabe K, Tanaka K (2003) Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J Plant Physiol 160(9):1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves. J Biol Chem 279(53):55355–55361

    Article  PubMed  CAS  Google Scholar 

  • Paiva NL, Edwards R, Sun Y, Hrazdina G, Dixon RA (1991) Stress responses in alfalfa (Medicago sativa L.). Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol Biol 17(4):653–667

    Article  PubMed  CAS  Google Scholar 

  • Petrucco S, Bolchi A, Foroni C, Percudani R, Rossi GL, Ottonello S (1996) A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation. Plant Cell 8(1):69–80

    PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443(7113):823–826

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Winz R, Iwase T, Nakajima K, Yamada Y, Hashimoto T (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50(3):427–440

    Article  PubMed  CAS  Google Scholar 

  • Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2(6):503

    PubMed  CAS  Google Scholar 

  • Smith J, Luo Y (2004) Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biot 64(4):465–472

    Article  CAS  Google Scholar 

  • Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53(4):273–284

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tiemann K, Inzé D, Van Montagu M, Barz W (1991) Pterocarpan phytoalexin biosynthesis in elicitor-challenged chickpea (Cicer arietinum L.) cell cultures. Purification, characterization and cDNA cloning of NADPH: isoflavone oxidoreductase. Eur J Biochem 200(3):751–758

    Article  PubMed  CAS  Google Scholar 

  • Turley R (2008) Expression of a phenylcoumaran benzylic ether reductase-like protein in the ovules of Gossypium hirsutum. Biol Plantarum 52(4):759–762

    Article  CAS  Google Scholar 

  • van Beek TA (2002) Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 967(1):21–55

    Article  PubMed  Google Scholar 

  • Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W (2000) Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta 211(4):502–509

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Cheng S (2002) Studies on the effects of regulating measures on the flavonoids contents in Ginkgo biloba leaves. Hubei Agric Sci 25(5):103–105 (in Chinese)

    Google Scholar 

  • Wang LJ, Jiang WB, Huang BJ (2004a) Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiol Plantarum 121(2):258–264

    Article  CAS  Google Scholar 

  • Wang LJ, Wang ZH, Li ZQ, Liu H, Liu WQ, Chen ZY, Yan P, Sun DQ (2004b) Effect of 5-aminolevulinic acid on enhancing apple fruit coloration. J Fruit Sci 21(6):512–515 (in Chinese)

    Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137(1):176–189

    Article  PubMed  CAS  Google Scholar 

  • Xu F (2008) Cloning and expression of GbPAL and GbANS genes and effect of ALA on the content of flavonoids in Ginkgo biloba. Doctor. Shandong Agricultural University, Shandong

  • Xu F, Cai R, Cheng S, Du H, Wang Y (2008a) Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr J Biotechnol 7(6):721–729

    Google Scholar 

  • Xu F, Cheng H, Cai R, Li LL, Chang J, Zhu J, Zhang FX, Chen LJ, Wang Y, Cheng SH (2008b) Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Mol Cells 26(6):536–547

    PubMed  CAS  Google Scholar 

  • Xu F, Li L, Zhang W, Cheng H, Sun N, Cheng S, Wang Y (2012) Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Mol Biol Rep: 1–12

  • Zhu Q, Guo T, Sui S, Liu G, Lei X, Luo L, Li M (2009) Molecular cloning and characterization of a novel isoflavone reductase-like gene (FcIRL) from high flavonoids-producing callus of Fagopyrum cymosum. Acta Pharmacol Sin 44(7):809–819

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (30971974 and 31270717), Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratories (20011BLKF238 and 2011BH0030), and University-industry Cooperation Fund of Hubei Educational Office (CXY2009B009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Shuiyuan or Cao Fuliang.

Additional information

Communicated by H. Judelson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3779 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, C., Linling, L., Feng, X. et al. Expression patterns of an isoflavone reductase-like gene and its possible roles in secondary metabolism in Ginkgo biloba . Plant Cell Rep 32, 637–650 (2013). https://doi.org/10.1007/s00299-013-1397-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1397-2

Keywords

Navigation