Advertisement

Plant Cell Reports

, Volume 32, Issue 6, pp 807–813 | Cite as

ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors

  • Zheng-Yi Xu
  • Dae Heon Kim
  • Inhwan Hwang
Review

Abstract

The plant hormone abscisic acid (ABA) plays pivotal roles in many important physiological processes including stomatal closure, seed dormancy, growth and various environmental stresses. In these responses, ABA action is under the control of complex regulatory mechanisms involving homeostasis, perception and signaling. Recent studies provide new insights into these processes, which are of great importance in understanding the mechanisms underlying the evolutionary principle of how plants can survive as a sessile organism under ever-changing environmental conditions. They also form the basis for designing plants that have an enhanced resistance to various stresses in particular abiotic stress.

Keywords

Abscisic acid (ABA) Biosynthetic pathways Catabolic pathways ABA transport ABA perception and signaling 

References

  1. Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384PubMedCrossRefGoogle Scholar
  2. Burbidge A, Grieve TM, Jackson A, Thompson A, McCarty DR, Taylor IB (1999) Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J 17:427–431PubMedCrossRefGoogle Scholar
  3. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743PubMedCrossRefGoogle Scholar
  4. Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W (2000) Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot 346:937–944CrossRefGoogle Scholar
  5. Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993PubMedCrossRefGoogle Scholar
  6. Gonzalez-Guzman M, Apostolova N, Belles JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodriquez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846PubMedCrossRefGoogle Scholar
  7. Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 366:27–32CrossRefGoogle Scholar
  8. Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanism: newly discovered components and newly emerging questions. Genes Dev 24:1659–1708CrossRefGoogle Scholar
  9. Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2000) A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol 123:553–562PubMedCrossRefGoogle Scholar
  10. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27:325–333PubMedCrossRefGoogle Scholar
  11. Jiang F, Hartung W (2008) Long-distance signaling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59:37–43PubMedCrossRefGoogle Scholar
  12. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the Phytohormone abscisic acid. Proc Natl Acad Sci USA 107:2355–2360PubMedCrossRefGoogle Scholar
  13. Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA 109:9653–9658PubMedCrossRefGoogle Scholar
  14. Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Suqimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA 107:2361–2366PubMedCrossRefGoogle Scholar
  15. Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120PubMedCrossRefGoogle Scholar
  16. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedGoogle Scholar
  17. Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058PubMedCrossRefGoogle Scholar
  18. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185Google Scholar
  19. North HM, De Almeida A, Boutin JP, Frey A, To A, Botran Sotta B, Marion-Poll A (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J 50:810–824PubMedCrossRefGoogle Scholar
  20. Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylase, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107PubMedCrossRefGoogle Scholar
  21. Okamoto M, Tanaka Y, Abrams SR, Kamiya Y, Seki M, Nambara E (2009) High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol 149:825–834PubMedCrossRefGoogle Scholar
  22. Pandy S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148CrossRefGoogle Scholar
  23. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Boetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriquez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Culter SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071PubMedGoogle Scholar
  24. Qin X, Zeevaart JA (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96:15354–15361PubMedCrossRefGoogle Scholar
  25. Rock CD, Zeevaart JA (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88:7496–7499PubMedCrossRefGoogle Scholar
  26. Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449PubMedCrossRefGoogle Scholar
  27. Sauter A, Dietz KJ, Hartung W (2002) A possible stress physiological role of abscisic acid conjugates in root-to-shoot signaling. Plant Cell Environ 25:223–228PubMedCrossRefGoogle Scholar
  28. Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48PubMedCrossRefGoogle Scholar
  29. Seo M, Koshiba T (2011) Transport of ABA from the site of biosynthesis to the site of action. J Plant Res 124:501–507PubMedCrossRefGoogle Scholar
  30. Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JA, Koorneef M, Kamiya Y, Koshiba T (2000) The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97:12908–12913PubMedCrossRefGoogle Scholar
  31. Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T (2004) Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol 45:1694–1703PubMedCrossRefGoogle Scholar
  32. Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935PubMedCrossRefGoogle Scholar
  33. Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826PubMedCrossRefGoogle Scholar
  34. Tan BC, Schwartz SH, Zeevaart JA, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94:12235–12240PubMedCrossRefGoogle Scholar
  35. Tan BC, Cline K, McCarty DR (2001) Localization and targeting of the VP14 epoxycarotenoid dioxygenase to chloroplast membranes. Plant J 27:373–382PubMedCrossRefGoogle Scholar
  36. Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56PubMedCrossRefGoogle Scholar
  37. Wilkinson S (1999) pH as a stress signal. Plant Growth Regul 29:87–99CrossRefGoogle Scholar
  38. Wilkinson S, Davies WJ (2002) ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210PubMedCrossRefGoogle Scholar
  39. Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083PubMedGoogle Scholar
  40. Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596PubMedCrossRefGoogle Scholar
  41. Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y, Kim DH, Kim SY, Seo M, Bressan RA, Yun DJ, Hwang I (2012) A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell 24:2184–2199Google Scholar
  42. Zeevaart JA (1983) Metabolism of abscisic acid and its regulation in Xanthium leaves during and after water stress. Plant Physiol 71:477–481PubMedCrossRefGoogle Scholar
  43. Zeevaart JA, Creelman RA (1998) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473CrossRefGoogle Scholar
  44. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Molecular and Life SciencesPohang University of Science and TechnologyPohangKorea
  2. 2.Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangKorea

Personalised recommendations