Skip to main content
Log in

DR5 as a reporter system to study auxin response in Populus

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems.

Abstract

We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Armstrong JI, Yuan S, Dale JM, Tanner VN, Theologis A (2004) Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis2. Proc Natl Acad Sci USA 101(41):14978–14983

    Article  PubMed  CAS  Google Scholar 

  • Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten TR, Bako L, Bhalerao RP (2011) Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proc Natl Acad Sci USA 108(8):3418–3423

    Article  PubMed  CAS  Google Scholar 

  • Bai F, Demason DA (2008) Hormone interactions and regulation of PsPK2: GUS compared with DR5: GUS and PID : GUS in Arabidopsis thaliana1. Am J Bot 95(2):133–145

    Article  PubMed  CAS  Google Scholar 

  • Ballas N, Wong LM, Theologis A (1993) Identification of the auxin-responsive element, Auxre, in the primary indoleacetic acid-inducible gene, Ps-Iaa4/5, of Pea (Pisum sativum). J Mol Biol 233(4):580–596

    Article  PubMed  CAS  Google Scholar 

  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proce Natl Acad Sci USA 97(26):14819–14824

    Article  CAS  Google Scholar 

  • Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    Article  PubMed  CAS  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115(5):591–602

    Article  PubMed  CAS  Google Scholar 

  • Bierfreund NM, Reski R, Decker EL (2003) Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens. Plant Cell Rep 21(12):1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39–44

    Article  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13(4):843–852

    PubMed  CAS  Google Scholar 

  • Chaabouni S, Jones B, Delalande C, Wang H, Li ZG, Mila I, Frasse P, Latche A, Pech JC, Bouzayen M (2009) Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth1. J Exp Bot 60(4):1349–1362

    Article  PubMed  CAS  Google Scholar 

  • Chandler JW (2009) Local auxin production: a small contribution to a big field. Bioessays 31(1):60–70

    Article  PubMed  CAS  Google Scholar 

  • Cheng YF, Dai XH, Zhao YD (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Gene Dev 20(13):1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198(4):532–541

    Article  CAS  Google Scholar 

  • Digby J, Wareing PF (1966) The effect of applied growth hormones on cambial division and the differentiation of the cambial derivatives. Ann Bot 30(3):539–548

    CAS  Google Scholar 

  • Druart N, Johansson A (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573

    Article  PubMed  CAS  Google Scholar 

  • Dubrovsky JG, Napsucialy-Mendivil S, Duclercq J, Cheng Y, Shishkova S, Ivanchenko MG, Friml J, Murphy AS, Benkova E (2011) Auxin minimum defines a developmental window for lateral root initiation. New Phytol 191(4):970–983

    Article  PubMed  CAS  Google Scholar 

  • Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legue V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151(4):1991–2005

    Article  PubMed  CAS  Google Scholar 

  • Filichkin SA, Meilan R, Busov VB, Ma C, Brunner AM, Strauss SH (2006) Alcohol-inducible gene expression in transgenic Populus. Plant Cell Rep 25(7):660–667

    Article  PubMed  CAS  Google Scholar 

  • Gallavotti A, Yang Y, Schmidt RJ, Jackson D (2008a) The relationship between auxin transport and maize branching. Plant Physiol 147(4):1913–1923

    Article  PubMed  CAS  Google Scholar 

  • Gallavotti A, Yang Y, Schmidt RJ, Jackson D (2008b) The relationship between auxin transport and maize branching. Plant Physiol 147(4):1913–1923

    Article  PubMed  CAS  Google Scholar 

  • Grieneisen VA, Xu J, Maree AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449(7165):1008–1013

    Article  PubMed  CAS  Google Scholar 

  • Groover A, Robischon M (2006) Developmental mechanisms regulating secondary growth in woody plants. Curr Opin Plant Biol 9:55–58

    Article  PubMed  CAS  Google Scholar 

  • Groover AT, Nieminen K, Helariutta Y, Mansfield SD (2010) Wood formation in Populus

  • Genetics and genomics of Populus. In: Jansson S, Bhalerao R, Groover A (eds) Plant genetics and genomics: crops and models, vol 8, Springer New York, pp 201–224

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49(3–4):373–385

    Article  PubMed  CAS  Google Scholar 

  • Hawkins S, Pilate G, Duverger E, Boudet A, Grima-Pettenati J (2002) The use of GUS histochemistry. In: Chaffey N (ed) Wood formation in trees: cell and molecular biology techniques. Taylor & Francis, London, pp 271–297

    Google Scholar 

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15(21):1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135(1):212–220

    Article  PubMed  CAS  Google Scholar 

  • Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163(2):181–187

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki K, Nonomura M, Kato H, Yamato KT, Kohchi T (2012) Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha. J Plant Res 125(5):643–651

    Article  PubMed  CAS  Google Scholar 

  • Junghans U, Polle A, Duchting P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29(8):1519–1531

    Article  PubMed  CAS  Google Scholar 

  • Kalluri UC, Difazio SP, Brunner AM, Tuskan GA (2007) Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7:59

    Article  PubMed  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY((TM)) vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193–195

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Stone JM (2007) Arabidopsis thaliana GH3.9 in auxin and jasmonate cross talk. Plant Signal Behav 2 (6):483–485

    Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9(10):963–967

    Article  PubMed  CAS  Google Scholar 

  • Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars—expression of chimeric genes using 4 different constructs. Plant Cell Rep 11(3):137–141

    Article  CAS  Google Scholar 

  • Li Y, Wu YH, Hagen G, Guilfoyle T (1999) Expression of the auxin-inducible GH3 promoter GUS fusion gene as a useful molecular marker for auxin physiology. Plant Cell Physiol 40(7):675–682

    Article  CAS  Google Scholar 

  • Liu ZB, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6(5):645–657

    PubMed  CAS  Google Scholar 

  • Mathesius U, Weinman JJ, Rolfe BG, Djordjevic MA (2000) Rhizobia can induce nodules in white clover by “hijacking” mature cortical cells activated during lateral root development. Mol Plant Microbe Interact 13(2):170–182

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275(43):33712–33717

    Article  PubMed  CAS  Google Scholar 

  • Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31(6):675–685

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with Tohaoco tissue cultures. Physiol Plant 15 (3):473–497

    Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling1. Plant Physiol 133(4):1843–1853

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. Plos Biol 2(9):1460–1471

    Article  CAS  Google Scholar 

  • Normanly J (1997) Auxin metabolism. Physiol Plant 100(3):431–442

    Article  CAS  Google Scholar 

  • Oono Y, Chen QG, Overvoorde PJ, Kohler C, Theologis A (1998) Age mutants of Arabidopsis exhibit altered auxin-regulated gene expression. Plant Cell 10(10):1649–1662

    PubMed  CAS  Google Scholar 

  • Peret B, Larrieu A, Bennett MJ (2009) Lateral root emergence: a difficult birth. J Exp Bot 60(13):3637–3643

    Article  PubMed  CAS  Google Scholar 

  • Perrine-Walker F, Doumas P, Lucas M, Vaissayre V, Beauchemin NJ, Band LR, Chopard J, Crabos A, Conejero G, Peret B, King JR, Verdeil JL, Hocher V, Franche C, Bennett MJ, Tisa LS, Laplaze L (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca Actinorhizal nodules. Plant Physiol 154(3):1372–1380

    Article  PubMed  CAS  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21(6):1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Popko J, Hansch R, Mendel RR, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol (Stuttg) 12(2):242–258

    Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99(5):463–472

    Article  PubMed  CAS  Google Scholar 

  • Savidge RA (1988) Auxin and ethylene regulation of diameter growth in trees. Tree Physiol 4(4):401–414

    Article  PubMed  CAS  Google Scholar 

  • Schlicht M, Strnad M, Scanlon MJ, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluska F (2006) Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav 1(3):122–133

    Article  PubMed  Google Scholar 

  • Snow R (1935) Activation of cambial growth by pure hormones. New Phytol 34(5):347–360

    Article  Google Scholar 

  • Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17(5):1343–1359

    Article  PubMed  CAS  Google Scholar 

  • Spicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186(3):577–592

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17(2):616–627

    Article  PubMed  CAS  Google Scholar 

  • Suer S, Agusti J, Sanchez P, Schwarz M, Greb T (2011) WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23(9):3247–3259

    Article  PubMed  CAS  Google Scholar 

  • Sundberg B, Tuominen H, Little C (1994) Effects of the indole-3-acetic acid (IAA) transport inhibitors N-1-naphthylphthalamic acid and morphactin on endogenous IAA dynamics in relation to compression wood formation in 1-year-old Pinus sylvestris (L.) shoots. Plant Physiol 106(2):469–476

    PubMed  CAS  Google Scholar 

  • Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10(8):946–954

    Article  PubMed  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7(11):847–859

    Article  PubMed  CAS  Google Scholar 

  • Teichmann T, Bolu-Arianto WH, Olbrich A, Langenfeld-Heyser R, Gobel C, Grzeganek P, Feussner I, Hansch R, Polle A (2008) GH3:GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiol 28(9):1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid Aspen. Plant Physiol 115(2):577–585

    PubMed  CAS  Google Scholar 

  • Tuominen H, Puech L, Regan S, Fink S, Olsson O, Sundberg B (2000) Cambial-region-specific expression of the Agrobacterium IAA genes in transgenic aspen visualized by a linked uidA reporter gene. Plant Physiol 123(2):531–541

    Article  PubMed  CAS  Google Scholar 

  • Uggla C, Magel E, Moritz T, Sundberg B (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol 125(4):2029–2039

    Article  PubMed  CAS  Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117(1):113–121

    Article  PubMed  CAS  Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93(17):9282–9286

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997a) ARF1, a transcription factor that binds to auxin response elements. Science 276(5320):1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. Plant Cell 7(10):1611–1623

    PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997b) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9(11):1963–1971

    PubMed  CAS  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136(6):1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Yamamoto KT (1998) Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin-resistant mutant of Arabidopsis, aux1. Plant Cell Physiol 39(6):660–664

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143(3):1362–1371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the US Department of Energy (DOE), Poplar Genome Based Research for Carbon Sequestration in Terrestrial Ecosystems (DE-FG02-06ER64185, DE-FG02-05ER64113), the Consortium for Plant Biotechnology Research, Inc. (GO12026-203A), the United States Department of Agriculture (USDA) CSREES, the USDA-NRI Plant Genome program (2003-04345) and USDA CSREES, the Biotechnology Risk Assessment Research Grants Program (2004-35300-14687), Plant Feedstock Genomics for Bioenergy: A Joint Research Program of USDA and DOE (2009-65504-05767), industrial members of the Tree Genomics and Biosafety Research Cooperative at Oregon State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor B. Busov.

Additional information

Communicated by S. Merkle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Yordanov, Y.S., Ma, C. et al. DR5 as a reporter system to study auxin response in Populus . Plant Cell Rep 32, 453–463 (2013). https://doi.org/10.1007/s00299-012-1378-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1378-x

Keywords

Navigation