Skip to main content
Log in

Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript


Key message

Agrobacterium tumefaciens strains differ not only in their ability to transform tomato Micro-Tom, but also in the number of transgene copies that the strains integrate in the genome.


The transformation efficiency of tomato (Solanum lycopersicum L.) cv. Micro-Tom with Agrobacterium tumefaciens strains AGL1, EHA105, GV3101, and MP90, harboring the plasmid pBI121 was compared. The presence of the nptII and/or uidA transgenes in regenerated T0 plants was determined by PCR, Southern blotting, and/or GUS histochemical analyses. In addition, a rapid and reliable duplex, qPCR TaqMan assay was standardized to estimate transgene copy number. The highest transformation rate (65 %) was obtained with the Agrobacterium strain GV3101, followed by EHA105 (40 %), AGL1 (35 %), and MP90 (15 %). The mortality rate of cotyledons due to Agrobacterium overgrowth was the lowest with the strain GV3101. The Agrobacterium strain EHA105 was more efficient than GV3101 in the transfer of single T-DNA insertions of nptII and uidA transgenes into the tomato genome. Even though Agrobacterium strain MP90 had the lowest transformation rate of 15 %, the qPCR analysis showed that the strain MP90 was the most efficient in the transfer of single transgene insertions, and none of the transgenic plants produced with this strain had more than two insertion events in their genome. The combination of higher transformation efficiency and fewer transgene insertions in plants transformed using EHA105 makes this Agrobacterium strain optimal for functional genomics and biotechnological applications in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others



Murashige and Skoog medium


Yeast Extract and Peptone medium




Wild type




Neomycin phosphotransferase




5-bromo-4-chloro-3-indolyl glucuronide


Base pair


  • Chen X, Raymie E, Baxter H, Berk K, Hen J, Agarwal S, Zale J (2010) High throughput transient gene expression system for switch grass (Panicum virgatum L.) seedlings. Biotechnol Biofuels 3:9. doi:10.1186/1754-6834-3-9

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Mendivil A, Rivera-Lopez J, German-Baez LJ, Lopez-Meyer M, Hernandez-Verdugo S, Lopez-Valenzuela JA, Reyes-Moreno C, Valdez-Ortiz A (2011) A simple and efficient protocol for plant regeneration and genetic transformation of Tomato cv. Micro-Tom from leaf explants. Hort Sci 46:1660–1665

    Google Scholar 

  • Dan Y, Yan H, Munyikwa T, Dong J, Zhang J, Armstrong CL (2006) Micro-Tom—a high-throughput model transformation system for functional genomics. Plant Cell Rep 25:432–441. doi:10.1007/s00299-005-0084-3

    Article  PubMed  CAS  Google Scholar 

  • Escuola C, Tripathy L, Fawole I (2011) Effects of various virulent strains of Agrobacterium tumefaciens on genetic transformation of Banana (Musa sp.) cultivar William. African J Hort Sci 5:84–91

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  PubMed  CAS  Google Scholar 

  • García-Saucedo PA, Valdez-Morales M, Valverde ME, Cruz-Hernández A, Paredes-López O (2005) Plant regeneration of three Opuntia genotypes used as human food. Plant Cell Tiss Org Cult 80:215–219. doi:10.1007/s11240-004-9158-0

    Article  Google Scholar 

  • Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant Microbe Interact 13:649–657. doi:10.1094/MPMI.2000.13.6.649

    Article  PubMed  CAS  Google Scholar 

  • Hellen R, Mullineaux P (2000) A guide to Agrobacterium binary Ti vectors an update. Trends Plant Sci 5(10):446–451. doi:10.1016/S1360-1385(00)01740-4

    Article  Google Scholar 

  • Hood EE, Gelvin SB, Melehers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218. doi:10.1007/BF01977351

    Article  CAS  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140. doi:71200122

    PubMed  CAS  Google Scholar 

  • James C (2011) Global Status of Commercialized Biotech/GM Crops: 2011. ISAAA Brief No. 43, ISAAA, Ithaca, NY

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jurado-Jacome E (2011) Agrobacterium infection: translocation of virulence proteins and role of VirF in host cells. Dissertation. Leiden University

  • Khanna HK, Jean-Yves P, Harding RM, Dickman MB, Dale JL (2007) Inhibition of Agrobacterium—induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. Mol Plant Microbe Interact 20:1048–1054. doi:10.1094

    Article  PubMed  CAS  Google Scholar 

  • Krylod A (2012) UNCTAD—Tomato/. Accessed on 20 June 2012

  • Lazo GR, Stein PA, Ludwig R (1991) A DNA transformation—competent Arabidopsis genomic library in Agrobacterium. Nature Biotechnol 9:963–967. doi:10.1038/nbt1091-963

    Article  CAS  Google Scholar 

  • Le QV, Belies-Isles J, Dusabenyagasani M, Tremblay FM (2001) An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens. J Exp Bot 52:2089–2095. doi:10.1093/jexbot/52.364.2089

    PubMed  CAS  Google Scholar 

  • Lee MK, Kim HS, Kim JS, Kim SH, Park JD (2004) Agrobacterium mediated transformation system for large-scale production of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J Plant Biol 47:300–306. doi:10.1007/BF03030544

    Article  CAS  Google Scholar 

  • Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real time PCR. BMC Biotechnol 2:20. doi:10.1186/1472-6750-2-20

    Article  PubMed  Google Scholar 

  • Mathews H, Clendennen KS, Caldwell GC, Liu XL, Connors K, Matheis N, Schuster KD, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703. doi:10.1105/tpc.012963

    Article  PubMed  CAS  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84. doi:10.1007/BF00269239

    Article  CAS  Google Scholar 

  • McGurl B, Pearc G, Orozco-Cárdenas ML, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 225:1570–1573. doi:10.1126/science.1549783

    Article  Google Scholar 

  • Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashir A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472. doi:10.1046/j.1365-313x.1997.12061465.x

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with Tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87. doi:10.1126/science.163.3862.85

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39:682–696. doi:10.1111/j.1365-313X.2004.02149.x

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Efficient and Genotype independent Agrobacterium-mediated tomato transformation. J Plant Physiol 160:1253–1257. doi:10.1078/0176-1617-01103

    Article  PubMed  CAS  Google Scholar 

  • Pereira A (2000) A transgenic perspective on plant functional genomics. Transgenic Res 9:245–260. doi:10.1023/A:1008967916498

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Diretto G, Tavarza R, Giuliano G (2007) Improved protocol for Agrobacterium mediated transformation of tomato and production of transgenic plants containing carotenoid biosynthetic gene CsZCD. Sci Hort 112:172–175. doi:10.1016/j.scienta.2006.12.015

    Article  CAS  Google Scholar 

  • Radchuk W, Klocke E, Radchuk RI, Neumann M, Blume YaB (2000) Production of transgenic rape plants (Brassica napus L) using Agrobacterium tumefaciens. Genetika 36:932–941. PMID:1099449

    Google Scholar 

  • Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K et al (2012) The tomato genome sequence provides insight into fleshy fruit evolution. Nature 485:635–641. doi:10.1038/nature11119

    Article  CAS  Google Scholar 

  • Scott JW, Harbaugh BK (1989) Micro-Tom—a miniature dwarf tomato. Florida Agricultural Experimental Station Circular 370:1–6

  • Suma B, Keshavachandran R, Nybe EV (2008) Agrobacterium tumefaciens mediated transformation and regeneration of ginger (Zingiber officinale Rosc.). J Trop Agric 46:38–44

    CAS  Google Scholar 

  • Sun HJ, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431. doi:10.1093/pcp/pci251

    Article  PubMed  CAS  Google Scholar 

  • Torregrosa L, Iocco P, Thomas MR (2002) Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L. Am J Enol Viticult 53:183–190

    CAS  Google Scholar 

  • Tyagi AK, Mohanty A (2000) Rice transformation for crop improvement and functional genomics. Plant Sci 158:1–18. doi:10.1016/S0168-9452(00)00325-3

    Article  PubMed  CAS  Google Scholar 

  • van Roekel JSC, Damm B, Melchers LS, Hoekema A (1993) Factors influencing transformation frequency of tomato (Lycopersicum esculentum). Plant Cell Rep 12:644–647. doi:10.1007/BF00232816

    Article  Google Scholar 

  • Weng H, Pan A, Yang L, Zhang C, Liu Z, Zhang D (2004) Estimating number of transgene copies in transgenic rapeseed by real time PCR assay with HMG I/Y as an endogenous reference gene. Plant Mol Biol Rep 22:289–300. doi:10.1007/BF02773139

    Article  CAS  Google Scholar 

  • Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D (2005) Estimating the copy number of transgenes in transformed rice by real time quantitative PCR. Plant Cell Rep 23:759–763. doi:10.1007/s00299-004-0881-0

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. L. Orozco-Cárdenas.

Additional information

Communicated by B. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetty, V.J., Ceballos, N., Garcia, D. et al. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep 32, 239–247 (2013).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: