Skip to main content
Log in

Live imaging of DORNRÖSCHEN and DORNRÖSCHEN-LIKE promoter activity reveals dynamic changes in cell identity at the microcallus surface of Arabidopsis embryonic suspensions

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Transgenic DRN::erGFP and DRNL::erGFP reporters access the window from explanting Arabidopsis embryos to callus formation and provide evidence for the acquisition of shoot meristem cell fates at the microcalli surface.

Abstract

The DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE (DRNL) genes encode AP2-type transcription factors, which are activated shortly after fertilisation in the zygotic Arabidopsis embryo. We have monitored established transgenic DRN::erGFP and DRNL::erGFP reporter lines using live imaging, for expression in embryonic suspension cultures and our data show that transgenic fluorophore markers are suitable to resolve dynamic changes of cellular identity at the surface of microcalli and enable fluorescence-activated cell sorting. Although DRN::erGFP and DRNL::erGFP are both activated in surface cells, their promoter activity marks different cell identities based on real-time PCR experiments and whole transcriptome microarray data. These transcriptome analyses provide no evidence for the maintenance of embryogenic identity under callus-inducing high-auxin tissue culture conditions but are compatible with the acquisition of shoot meristem cell fates at the surface of suspension calli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

CaMV:

Cauliflower mosaic virus

CIM:

Callus-inducing medium

FACS:

Fluorescence-activated cell sorting

SAM:

Shoot apical meristem

SE:

Somatic embryogenesis

SEIM:

Somatic embryogenesis inducing medium

SIM:

Shoot-inducing medium

GFP:

Green fluorescent protein

erGFP:

Endoplasmic reticulum targeted GFP version

DRN = ESR1 :

DORNRÖSCHEN or ENHANCER OF SHOOT REGENERATION1

DRNL = ESR2 :

DORNRÖSCHEN-LIKE or ENHANCER OF SHOOT REGENERATION2

WOX :

WUSCHEL-related homeobox

WUS :

WUSCHEL

STM :

SHOOT MERISTEMLESS

ARF :

Auxin response factor

IAA :

Indoleacetic acid-induced protein

ARR :

Arabidopsis response regulator

References

  • Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126(8):1563–1570

    PubMed  CAS  Google Scholar 

  • Argyros RD, Mathews DE, Chiang YH, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20(8):2102–2116

    Article  PubMed  CAS  Google Scholar 

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57(4):626–644

    Article  PubMed  CAS  Google Scholar 

  • Backs-Hüsemann D, Reinert J (1970) Embryobildung durch isolierte Einzelzellen aus Gewebekulturen von Daucus carota. Protoplasma 70(1):49–60

    Article  Google Scholar 

  • Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13(12):2609–2618

    PubMed  CAS  Google Scholar 

  • Capron A, Chatfield S, Provart N, Berleth T (2009) Embryogenesis: pattern formation from a single cell. In: The Arabidopsis Book. American Society of Plant Biologists, Rockville, pp 1–28

  • Chandler JW, Cole M, Flier A, Grewe B, Werr W (2007) The AP2 transcription factors DORNRÖSCHEN and DORNRÖSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134(9):1653–1662

    Article  PubMed  CAS  Google Scholar 

  • Chandler J, Nardmann J, Werr W (2008) Plant development revolves around axes. Trends Plant Sci 13(2):78–84

    Article  PubMed  CAS  Google Scholar 

  • Chandler JW, Cole M, Jacobs B, Comelli P, Werr W (2011a) Genetic integration of DORNRÖSCHEN and DORNRÖSCHEN-LIKE reveals hierarchical interactions in auxin signalling and patterning of the Arabidopsis apical embryo. Plant Mol Biol 75(3):223–236

    Article  PubMed  CAS  Google Scholar 

  • Chandler JW, Jacobs B, Cole M, Comelli P, Werr W (2011b) DORNRÖSCHEN-LIKE expression marks Arabidopsis floral organ founder cells and precedes auxin response maxima. Plant Mol Biol 76(1–2):171–185

    Article  PubMed  CAS  Google Scholar 

  • Che P, Gingerich DJ, Lall S, Howell SH (2002) Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14(11):2771–2785

    Article  PubMed  CAS  Google Scholar 

  • Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141(2):620–637

    Article  PubMed  CAS  Google Scholar 

  • Chiu WH, Chandler J, Cnops G, Van Lijsebettens M, Werr W (2007) Mutations in the TORNADO2 gene affect cellular decisions in the peripheral zone of the shoot apical meristem of Arabidopsis thaliana. Plant Mol Biol 63(6):731–744

    Article  PubMed  CAS  Google Scholar 

  • Cole M, Chandler J, Weijers D, Jacobs B, Comelli P, Werr W (2009) DORNRÖSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development 136(10):1643–1651

    Article  PubMed  CAS  Google Scholar 

  • CroweML SerizetC, Thareau V, Aubourg S, Rouze P, Hilson P, Beynon J, Weisbeek P, van Hummelen P, Reymond P et al (2003) CATMA: a complete Arabidopsis GST database. Nucleic Acids Res 31:156–158

    Article  Google Scholar 

  • Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198(4):532–541

    Article  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426(6963):147–153

    Article  PubMed  CAS  Google Scholar 

  • Gagnot S, Tamby JP, Martin-Magniette ML, Bitton F, Taconnat L, Balzergue S, Aubourg S, Renou JP, Lecharny A, Brunaud V (2008) CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform. Nucleic Acids Res. 36(Database issue):D986–990

    Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43(1):27–47

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Dudoit S, Speed TP (2003) Resampling-based multiple testing for microarray data analysis. Test 12:1–77

    Article  Google Scholar 

  • Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131(3):657–668

    Article  PubMed  CAS  Google Scholar 

  • Halperin W, Wetherell DF (1964) Adventive embryony in tissue cultures of wild carrot Daucus Carota. Am J Bot 51(3):274–283

    Article  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis Somatic Embryogenesis Receptor Kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127(3):803–816

    Article  PubMed  CAS  Google Scholar 

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15(21):1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao RP, Bitton F, Caboche M, Cannoot B et al (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14:2176–2189

    Article  PubMed  CAS  Google Scholar 

  • Iida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K (2005) RARTF: database and tools for complete sets of Arabidopsis transcription factors. DNA Res 12(4):247–256

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Banno H, Niu QW, Howell SH, Chua NH (2006) The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol 47(11):1443–1456

    Article  PubMed  CAS  Google Scholar 

  • Kirch T, Simon R, Grunewald M, Werr W (2003) The DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem cell fate and lateral organ development. Plant Cell 15(3):694–705

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379(6560):66–69

    Article  PubMed  CAS  Google Scholar 

  • Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B et al (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Matsuo N, Mase H, Makino M, Takahashi H, Banno H (2009) Identification of ENHANCER OF SHOOT REGENERATION 1-upregulated genes during in vitro shoot regeneration. Plant Biotechnol 26(4):385–393

    Article  CAS  Google Scholar 

  • Matsuo N, Makino M, Banno H (2011) Arabidopsis ENHANCER OF SHOOT REGENERATION (ESR)1 and ESR2 regulate in vitro shoot regeneration and their expressions are differentially regulated. Plant Sci 181(1):39–46

    Article  PubMed  CAS  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411(6838):709–713

    Article  PubMed  CAS  Google Scholar 

  • Mordhorst AP, Voerman KJ, Hartog MV, Meijer EA, van Went J, Koornneef M, de Vries SC (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149(2):549–563

    PubMed  CAS  Google Scholar 

  • Mordhorst AP, Hartog MV, El Tamer MK, Laux T, de Vries SC (2002) Somatic embryogenesis from Arabidopsis shoot apical meristem mutants. Planta 214(6):829–836

    Article  PubMed  CAS  Google Scholar 

  • Nardmann J, Werr W (2012) The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. Plant Mol Biol 78(1–2):123–134

    Article  PubMed  CAS  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A 94(13):7076–7081

    Article  PubMed  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87

    Article  PubMed  CAS  Google Scholar 

  • Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant-breeding. Euphytica 81(1):93–107

    Article  Google Scholar 

  • Raghavan V (2005) Control of leaf formation and somatic embryogenesis in cultured zygotic embryos of Arabidopsis thaliana by 2,4-dichlorophenoxyacetic acid (2,4-D). Int J of Plant Sci 166(4):575–588

    Article  CAS  Google Scholar 

  • Reinert J (1958) Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. Naturwissenschaften 45:344–345

    Article  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255–260

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Schirawski J, Planchais S, Haenni AL (2000) An improved protocol for the preparation of protoplasts from an established Arabidopsis thaliana cell suspension culture and infection with RNA of turnip yellow mosaic tymovirus: a simple and reliable method. J Virol Methods 86(1):85–94

    Article  PubMed  CAS  Google Scholar 

  • Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, Vernoux T, Brady SM, Dewitte W, Murray JA, Benfey PN (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466(7302):128–132

    Article  PubMed  CAS  Google Scholar 

  • Spencer MW, Casson SA, Lindsey K (2007) Transcriptional profiling of the Arabidopsis embryo. Plant Physiol 143(2):924–940

    Article  PubMed  CAS  Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59(3):448–460

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18(3):463–471

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Zhang Z, Laux T (2011) Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development. Dev Cell 20(2):264–270

    Article  PubMed  CAS  Google Scholar 

  • Yadav RK, Girke T, Pasala S, Xie M, Reddy GV (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA 106(12):4941–4946

    Article  PubMed  CAS  Google Scholar 

  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30(4):e15

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft via SFB 572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Werr.

Additional information

Communicated by R. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, M., Jacobs, B., Soubigou-Taconnat, L. et al. Live imaging of DORNRÖSCHEN and DORNRÖSCHEN-LIKE promoter activity reveals dynamic changes in cell identity at the microcallus surface of Arabidopsis embryonic suspensions. Plant Cell Rep 32, 45–59 (2013). https://doi.org/10.1007/s00299-012-1339-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1339-4

Keywords