Skip to main content
Log in

Dramatic genotypic difference in, and effect of genetic crossing on, tissue culture-induced mobility of retrotransposon Tos17 in rice

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We show for the first time that intraspecific crossing may impact mobility of the prominent endogenous retrotransposon Tos17 under tissue culture conditions in rice.

Abstract

Tos17, an endogenous copia retrotransposon of rice, is transpositionally active in tissue culture. To study whether there exists fundamental genotypic difference in the tissue culture-induced mobility of Tos17, and if so, whether the difference is under genetic and/or epigenetic control, we conducted this investigation. We show that dramatic difference in tissue culture-induced Tos17 mobility exists among different rice pure-line cultivars sharing the same maternal parent: of the three lines studied that harbor Tos17, two showed mobilization of Tos17, which accrued in proportion to subculture duration, while the third line showed total quiescence (immobility) of the element and the fourth line did not contain the element. In reciprocal F1 hybrids between Tos17-mobile and -immobile (or absence) parental lines, immobility was dominant over mobility. In reciprocal F1 hybrids between both Tos17-mobile parental lines, an additive or synergistic effect on mobility of the element was noticed. In both types of reciprocal F1 hybrids, clear difference in the extent of Tos17 mobility was noted between crossing directions. Given that all lines share the same maternal parent, this observation indicates the existence of epigenetic parent-of-origin effect. We conclude that the tissue culture-induced mobility of Tos17 in rice is under complex genetic and epigenetic control, which can be either enhanced or repressed by intraspecific genetic crossing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Cheng C, Daigen M, Hirochika H (2006) Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genomics 276:378–390

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Wang X, Su L, Zhai J, Cao S, Zhang D, Liu C, Bi Y, Qian Q, Cheng Z, Chu C, Cao X (2007) SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19:9–22

    Article  PubMed  CAS  Google Scholar 

  • Grafi G, Avivi Y (2004) Stem cells: a lesson from dedifferentiation. Trend Biotech 22:388–389

    Article  CAS  Google Scholar 

  • Grafi G, Florentin A, Ransbo- tynVand Morgenstern Y (2011) The stem cell state in plant development and in response to stress. Front Plant Sci 2:53

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien MA, Audeon C, Bonnivard E, Chalhoub B, Casacuberta JM, Costa A-PP, Melayah D, Le QH, Petit M, Poncet C, Tam SM, Van Sluys MA, Mhiri C (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Nat Acad Sci USA 93:7783–7788

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Lu G, Zhao Q, Liu X, Han B (2008) Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice. Plant Physiol 148:25–40

    Article  PubMed  CAS  Google Scholar 

  • Josefsson C, Dilkes B, Comai L (2006) Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol 16:1322–1328

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy AA (2011) Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188:263–272

    Article  PubMed  CAS  Google Scholar 

  • La H, Ding B, Zhou B, Mishra GP, Yang H, Chen S, Bellizzi MDR, Meyers BC, Peng Z, Zhu JK, Wang GL (2011) A 5-methylcytosine DNA glycosylase/lyasedemethylates the retrotransposon Tos17 and promotes its transposition in rice. Proc Natl Acad Sci USA 108:15498–15503

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Ann Rev Plant Biol 60:43–66

    Article  CAS  Google Scholar 

  • Liu B, Wendel JF (2000) Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43:874–880

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Han FP, Tan M, Shan XH, Dong YZ, Wang XZ, Fedak G, Hao S, Liu B (2004) Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor Appl Genet 109:200–209

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Michalak P (2009) Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity 102:45–50

    Article  PubMed  CAS  Google Scholar 

  • Miyao A, Iwasaki Y, Kitano H, Itoh JI, Maekawa M, Murata K, Yatou O, Nagato Y, Hirochika HA (2007) Large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol 63:625–635

    Article  PubMed  CAS  Google Scholar 

  • Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53:256–264

    Article  PubMed  CAS  Google Scholar 

  • Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  PubMed  CAS  Google Scholar 

  • Petit J, Bourgeois E, Stenger W, Bès M, Droc G, Meynard D, Courtois B, Ghesquière A, Panaud O, Sabot F, Guiderdoni E (2009) Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus. Mol Genet Genomics 282:633–652

    Article  PubMed  CAS  Google Scholar 

  • Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim K-Y, Kovarik A, Leitch A-R, Grandbastien M-A, Mhiri C (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytologist 186:135–147

    Article  PubMed  CAS  Google Scholar 

  • Sabot F, Picault N, El-Baidouri M, Llauro C, Chaparro C, Piegu B, Roulin A, Guiderdoni E, Delabastide M, McCombie R, Panaud O (2011) Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data. Plant J 66:241–246

    Article  PubMed  CAS  Google Scholar 

  • Shan XH, Liu ZL, Dong ZY, Wang YM, Chen Y, Lin XY, Long LK, Han FP, Dong YS, Liu B (2005) Mobilization of the active mite transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22:976–990

    Article  PubMed  CAS  Google Scholar 

  • Shan XH, Ou XF, Liu ZL, Dong YZ, Lin XY, Li XW, Liu B (2009) Transpositional activation of mping in an asymmetric nuclear somatic cell hybrid of rice and Zizania latifolia was accompanied by massive element loss. Theor Appl Genet 119:1325–1333

    Article  PubMed  CAS  Google Scholar 

  • Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:872–873

    Article  Google Scholar 

  • Wang HY, Tian Q, Ma YQ, Wu Y, Miao GJ, Ma Y, Cao DH, Wang XL, Lin CJ, Pang JS, Liu B (2010a) Transpositional reactivation of two LTR retrotransposons in rice-Zizania recombinant inbred lines (RILs). Hereditas 147:264–277

    Article  PubMed  Google Scholar 

  • Wang N, Wang H, Wang H, Zhang D, Wu Y, Ou X, Liu S, Dong Z, Liu B (2010b) Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia. BMC Plant Biol 10:190

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30970232) and the Programme for Introducing Talents to Universities (B07017).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingshan Dong or Bao Liu.

Additional information

Communicated by M. Jordan.

C. Lin and X. Lin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C., Lin, X., Hu, L. et al. Dramatic genotypic difference in, and effect of genetic crossing on, tissue culture-induced mobility of retrotransposon Tos17 in rice. Plant Cell Rep 31, 2057–2063 (2012). https://doi.org/10.1007/s00299-012-1316-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1316-y

Keywords

Navigation