Skip to main content
Log in

Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolata

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A method has been developed to genetically transform the medicinal plant Maesa lanceolata. Initially, we tested conditions for transient expression of GFP-bearing constructs in agroinfiltrated leaves. Leaf tissues of M. lanceolata were infiltrated with Agrobacterium tumefaciens carrying a nuclear-targeted GFP construct to allow the quantification of the transformation efficiency. The number of transfected cells was depended on the bacterial density, bacterial strains, the co-cultivation time, and presence of acetosyringone. The transient transformation assay generated the highest ratio of transfected cells over non-transfected cells upon 5 days post-infiltration using A. tumefaciens strain LBA4404 at an OD600 = 1.0 in the presence of 100 μM acetosyringone and in the absence of a viral suppressor construct. In a second series of experiments we set up a stable transformation protocol that resulted in the regeneration of kanamycin-resistant plants expressing nuclear GFP. This transformation protocol will be used to introduce overexpression and RNAi constructs into M. lanceolata plants that may interfere with triterpenoid saponin biosynthesis.

Key message We have developed a transformation protocol for saponin producing Maesa lanceolata. Using the protocol reported here, now we are able to generate the tools for the modification of saponin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal D, Kumar A, Reddy M (2010) Shoot organogenesis in elite clones of Eucalyptus tereticornis. Plant Cell, Tissue Organ Cult 102:45–52

    Article  Google Scholar 

  • Apers S, Bürgermeister J, Baronikova S, Vermeulen P, Paper D, Van Marck E, Vlietinck AJ, Pieters LAC (2002) Antiangiogenic activity of natural products: in vivo and in vitro test models. J Pharm Belgique 84:47–49

    Google Scholar 

  • Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21:73–81

    Article  PubMed  CAS  Google Scholar 

  • Bertazzon N, Raiola A, Castiglioni C, Gardiman M, Angelini E, Borgo M, Ferrari S (2012) Transient silencing of the grapevine gene VvPGIP1 by agroinfiltration with a construct for RNA interference. Plant Cell Rep 31:133–143

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar PB, Venkateshwaran M, Wu L, Ane JM, Jiang JM (2009) Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS ONE 4:e5812

    Article  PubMed  Google Scholar 

  • Chen R, Gyokusen M, Nakazawa Y, Su Y, Gyokusen K (2010) Establishment of an Agrobacterium-mediated transformation system for Periploca sepium Bunge. Plant Biotechnol 27:173–181

    Article  Google Scholar 

  • Dhillon T, Chiera J, Lindbo J, Finer J (2009) Quantitative evaluation of six different viral suppressors of silencing using image analysis of transient GFP expression. Plant Cell Rep 28:639–647

    Article  PubMed  CAS  Google Scholar 

  • Faizal A, Lambert E, Foubert K, Apers S, Geelen D (2011) In vitro propagation of four saponin producing Maesa species. Plant Cell, Tissue Organ Cult 106:215–223

    Article  CAS  Google Scholar 

  • Figueiredo J, Römer P, Lahaye T, Graham J, White F, Jones J (2011) Agrobacterium-mediated transient expression in citrus leaves: a rapid tool for gene expression and functional gene assay. Plant Cell Rep 30:1339–1345

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol 67:16–37

    Article  CAS  Google Scholar 

  • Godwin I, Todd G, Ford-Lloyd B, Newbury H (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  CAS  Google Scholar 

  • Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J 48:818–826

    Article  PubMed  CAS  Google Scholar 

  • Jia H, Liao M, Verbelen J-P, Vissenberg K (2007) Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep 26:1961–1965

    Article  PubMed  CAS  Google Scholar 

  • Kapila J, DeRycke R, VanMontagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Baek K, Park CM (2009) Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep 28:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Kopertekh L, Schiemann J (2005) Agroinfiltration as a tool for transient expression of cre recombinase in vivo. Transgenic Res 14:793–798

    Article  PubMed  CAS  Google Scholar 

  • Kościańska E, Kalantidis K, Wypijewski K, Sadowski J, Tabler M (2005) Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum. Plant Mol Biol 59:647–661

    Article  PubMed  Google Scholar 

  • Lakatos L, Szittya G, Silhavy D, Burgyan J (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 25:2768–2780

    Article  Google Scholar 

  • Lambert E, Goossens A, Panis B, Van Labeke MC, Geelen D (2009) Cryopreservation of hairy root cultures of Maesa lanceolata and Medicago truncatula. Plant Cell, Tissue Organ Cult 96:289–296

    Article  Google Scholar 

  • Leckie B, Neal Stewart C (2011) Agroinfiltration as a technique for rapid assays for evaluating candidate insect resistance transgenes in plants. Plant Cell Rep 30:325–334

    Article  PubMed  CAS  Google Scholar 

  • Muhammad I, Takamatsu S, Walker LA, Mossa JS, Fong HHS, El-Feraly FS (2003) Cytotoxic and antioxidant activities of alkylated benzoquinones from Maesa lanceolata. Phytother Res 17:887–891

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317–333

    PubMed  CAS  Google Scholar 

  • Ozawa K, Takaiwa F (2010) Highly efficient Agrobacterium-mediated transformation of suspension-cultured cell clusters of rice (Oryza sativa L.). Plant Sci 179:333–337

    Article  CAS  Google Scholar 

  • Plus J, George L, Eapen S, Rao PS (1993) Enhanced plant regeneration in pearl millet (Pennisetum americanum) by ethylene inhibitors and cefotaxime. Plant Cell, Tissue Organ Cult 32:91–96

    Article  Google Scholar 

  • Rasband WS (1997–2009) ImageJ, US National Institutes of Health, Bethesda. http://rsbinfonihgov/ij/

  • Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Schaart JG, Krens FA, Pelgrom KTB, Mendes O, Rouwendal GJA (2004) Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. Plant Biotechnol J 2:233–240

    Article  PubMed  CAS  Google Scholar 

  • Sindambiwe JB, Balde AM, De Bruyne T, Pieters L, Van den Heuvel H, Claeys M, Berghe VD, Vlietinck AJ (1996) Triterpenoid saponins from Maesa lanceolata. Phytochemistry 41:269–277

    Article  PubMed  CAS  Google Scholar 

  • Sindambiwe JB, Calomme M, Geerts S, Pieters L, Vlietinck AJ, Vanden Berghe DA (1998) Evaluation of biological activities of triterpenoid saponins from Maesa lanceolata. J Nat Prod 61:585–590

    Article  PubMed  CAS  Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja K, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30:425–436

    Article  PubMed  CAS  Google Scholar 

  • Suzaki K, Yoshida K, Sawada H (2004) Detection of tumorigenic Agrobacterium strains from infected apple saplings by colony PCR with improved PCR primers. J Gen Plant Pathol 70:342–347

    Article  CAS  Google Scholar 

  • Tadesse D, Eguale T, Giday M, Mussa A (2009) Ovicidal and larvicidal activity of crude extracts of Maesa lanceolata and Plectranthus punctatus against Haemonchus contortus. J Ethnopharmacol 122:240–244

    Article  PubMed  Google Scholar 

  • Tsuda K, Qi Y, Nguyen LV, Bethke G, Tsuda Y, Glazebrook J, Katagiri F (2012) An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant J 69:713–719

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  PubMed  CAS  Google Scholar 

  • Yasmin A, Debener T (2010) Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell, Tissue Organ Cult 102:245–250

    Article  CAS  Google Scholar 

  • Zhang Y-M, Zheng Y-M, Xiao N, Wang L-N, Zhang Y, Fang R-X, Chen X-Y (2012) Functional analysis of the HS185 regulatory element in the rice HSP70 promoter. Mol Biol Rep 39:1649–1657

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Lo Schiavo F (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845–853

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge David Baulcombe from Sainsbury Laboratory, Norwich, United Kingdom for providing the p19 construct. This research was funded by FWO-Flanders (project No. G.0014.08) and we thank the Directorate General of Higher Education, Ministry of Education and Culture, Republic of Indonesia for providing financial support for A.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Geelen.

Additional information

Communicated by H. Ebinuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faizal, A., Geelen, D. Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolata . Plant Cell Rep 31, 1517–1526 (2012). https://doi.org/10.1007/s00299-012-1266-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1266-4

Keywords

Navigation