Skip to main content
Log in

Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The moss Physcomitrella patens is suitable for systems biology studies, as it can be grown axenically under standardised conditions in plain mineral medium and comprises only few cell types. We report on metabolite profiling of two major P. patens tissues, filamentous protonema and leafy gametophores, from different culture conditions. A total of 96 compounds were detected, 21 of them as yet unknown in public databases. Protonema and gametophores had distinct metabolic profiles, especially with regard to saccharides, sugar derivates, amino acids, lignin precursors and nitrogen-rich storage compounds. A hydroponic culture was established for P. patens, and was used to apply drought stress under physiological conditions. This treatment led to accumulation of osmoprotectants, such as altrose, maltitol, ascorbic acid and proline. Thus, these osmoprotectants are not unique to seed plants but have evolved at an early phase of the colonization of land by plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GC–MS:

Gas chromatography–mass spectrometry

References

  • Beike AK, Decker EL, Frank W, Lang D, Vervliet-Scheebaum M, Zimmer AD, Reski R (2010) Applied Bryology—Bryotechnology. Trop Bryol 31:22–32

    Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Aurell Wistrom C (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10

    PubMed  CAS  Google Scholar 

  • Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol 176:275–287

    Article  PubMed  CAS  Google Scholar 

  • Damiani I, Morreel K, Danoun S, Goeminne G, Yahiaoui N, Marque C, Kopka J, Messens E, Goffner D, Boerjan W, Boudet AM, Rochange S (2005) Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem. Plant Mol Biol 59:753–769

    Article  PubMed  CAS  Google Scholar 

  • Decker EL, Frank W, Sarnighausen E, Reski R (2006) Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biol 8:397–405

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O (2006) Metabolite profiling in Arabidopsis. In: Salinas J, Sanchez-Serrano JJ (eds) Arabidopsis protocols, 2nd edn. Methods in molecular biology series. Humana Press, Totowa, pp 439–447

  • Filippi SB, Azevedo RA, Sodek L, Mazzafera P (2007) Allantoin has a limited role as nitrogen source in cultured coffee cells. J Plant Physiol 164:544–552

    Article  PubMed  CAS  Google Scholar 

  • Frank W, Decker EL, Reski R (2005) Molecular tools to study Physcomitrella patens. Plant Biol 7:220–227

    Article  PubMed  CAS  Google Scholar 

  • Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK (2008) Metabolomics of temperature stress. Physiol Plant 132:220–235

    PubMed  CAS  Google Scholar 

  • Handa S, Handa AK, Hasegawa PM, Bressan RA (1986) Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol 80:938–945

    Article  PubMed  CAS  Google Scholar 

  • Harrigan GG, Stork LG, Riordan SG, Ridley WP, Macisaac S, Halls SC, Orth R, Rau D, Smith RG, Wen L, Brown WE, Riley R, Sun D, Modiano S, Pester T, Lund A, Nelson D (2007) Metabolite analyses of grain from maize hybrids grown in the United States under drought and watered conditions during the 2002 field season. J Agric Food Chem 55:6169–6176

    Article  PubMed  CAS  Google Scholar 

  • Heintz D, Wurtz V, High AA, van Dorsselaer A, Reski R, Sarnighausen E (2004) An efficient protocol for the identification of protein phosphorylation in a seedless plant, sensitive enough to detect members of signalling cascades. Electrophoresis 25:1149–1159

    Article  PubMed  CAS  Google Scholar 

  • Heintz D, Erxleben A, High AA, Wurtz V, Reski R, van Dorsselaer A, Sarnighausen E (2006) Rapid alteration of the phosphoproteome in the moss Physcomitrella patens after cytokinin treatment. J Proteome Res 5:2283–2293

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Hosp J, Tashpulatov A, Roessner U, Barsova E, Katholnigg H, Steinborn R, Melikant B, Lukyanov S, Heberle-Bors E, Touraev A (2007) Transcriptional and metabolic profiles of stress-induced, embryogenic tobacco microspores. Plant Mol Biol 63:137–149

    Article  PubMed  CAS  Google Scholar 

  • Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa M, Hirai N, Hashimoto T (2009) A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69:287–298

    Article  PubMed  CAS  Google Scholar 

  • Kamisugi Y, Schlink K, Rensing SA, Schween G, von Stackelberg M, Cuming AC, Reski R, Cove DJ (2006) The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res 34:6205–6214

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of delta-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  • Krzaczkowski L, Wright M, Gairin JE (2008) Bryophytes, a potent source of drugs for tomorrow’s medicine? Med Sci 24:947–953

    Google Scholar 

  • Lang D, Eisinger J, Reski R, Rensing SA (2005) Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism in mosses. Plant Biol 7:238–250

    Article  PubMed  CAS  Google Scholar 

  • Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549

    Article  PubMed  CAS  Google Scholar 

  • Lang EGE, Mueller SJ, Hoernstein SNW, Porankiewicz-Asplund J, Vervliet-Scheebaum M, Reski R (2011) Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as basis for sub-cellular proteomics. Plant Cell Rep 30:205–215

    Article  PubMed  CAS  Google Scholar 

  • Levi A, Paterson AH, Cakmak I, Saranga Y (2011) Metabolite and mineral analyses of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits. Physiol Plant 141:265–275

    Article  PubMed  CAS  Google Scholar 

  • McCleary JA, Sypherd PS, Walkington DL (1960) Mosses as possible sources of antibiotics. Science 131:108

    Article  PubMed  CAS  Google Scholar 

  • Mondolot L, La Fisca P, Buatois B, Talansier E, De Kochko A, Campa C (2006) Evolution of caffeoylquinic acid content and histolocalization during Coffea canephora leaf development. Ann Bot 98:33–40

    Article  PubMed  CAS  Google Scholar 

  • Montenegro G, Portaluppi MC, Salas FA, Diaz MF (2009) Biological properties of the Chilean native moss Sphagnum magellanicum. Biol Res 42:233–237

    Article  PubMed  Google Scholar 

  • Mues R (2000) Chemical constituents and biochemistry. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 150–181

    Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • Reski R (1998) Development, genetics and molecular biology of mosses. Bot Acta 111:1–15

    CAS  Google Scholar 

  • Reski R, Abel WO (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165:354–358

    Article  CAS  Google Scholar 

  • Richardt S, Timmerhaus G, Lang D, Qudeimat E, Correa LG, Reski R, Rensing SA, Frank W (2010) Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Mol Biol 72:27–45

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Article  PubMed  CAS  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Ichikawa T, Yamada K, Yamashita M, Tanimoto M, Hikita A, Ijuin Y, Kondo K (1988) Antitumor principles in mosses: the first isolation and identification of maytansinoids, including a novel 15-methoxyansamitocin P-3. J Nat Prod 51:845–850

    Article  PubMed  CAS  Google Scholar 

  • Scher JM, Zapp J, Becker H (2003) Lignan derivatives from the liverwort Bazzania trilobata. Phytochemistry 62:769–777

    Article  PubMed  CAS  Google Scholar 

  • Schulte J, Erxleben A, Schween G, Reski R (2006) High throughput metabolic screen of Physcomitrella transformants. Bryologist 109:247–256

    Article  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    Article  PubMed  CAS  Google Scholar 

  • Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95:4368–4373

    Article  PubMed  CAS  Google Scholar 

  • Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81:211–223

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Treichel S, Brinckmann E, Scheitler B, von Willert DJ (1984) Ocurrence and changes of proline content in plants in the southern Namib Desert in relations to increasing and decreasing drought. Planta 1652:236–242

    Article  Google Scholar 

  • von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H, Kuang TY, Pei ZM, Shen SH, He YK (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149:1739–1750

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W (2009) Metabolomics: integrating the metabolome and the proteome for systems biology. Annu Plant Rev 35:258–289

    CAS  Google Scholar 

  • Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  PubMed  CAS  Google Scholar 

  • Wolucka BA, van Montagu M (2003) GDP-mannose 3′, 5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, Stewart NR, Syrenne RD, Yang X, Gao P, Shi W, Doeppke C, Sykes RW, Burris JN, Bozell JJ, Cheng MZ, Hayes DG, Labbe N, Davis M, Stewart CN Jr, Yuan JS (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics 10(Suppl 11):S3

    Article  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG Research Training Group GRK1305 “Signal Systems in Plant Model Organisms”, and by the German Federal Ministry of Education and Research BMBF (FRISYS 0313921). Support from the Freiburg Institute for Advanced Studies (FRIAS) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Reski.

Additional information

Communicated by P. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erxleben, A., Gessler, A., Vervliet-Scheebaum, M. et al. Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances. Plant Cell Rep 31, 427–436 (2012). https://doi.org/10.1007/s00299-011-1177-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1177-9

Keywords

Navigation