Plant Cell Reports

, Volume 31, Issue 2, pp 427–436 | Cite as

Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances

  • Anika Erxleben
  • Arthur Gessler
  • Marco Vervliet-Scheebaum
  • Ralf Reski
Original Paper


The moss Physcomitrella patens is suitable for systems biology studies, as it can be grown axenically under standardised conditions in plain mineral medium and comprises only few cell types. We report on metabolite profiling of two major P. patens tissues, filamentous protonema and leafy gametophores, from different culture conditions. A total of 96 compounds were detected, 21 of them as yet unknown in public databases. Protonema and gametophores had distinct metabolic profiles, especially with regard to saccharides, sugar derivates, amino acids, lignin precursors and nitrogen-rich storage compounds. A hydroponic culture was established for P. patens, and was used to apply drought stress under physiological conditions. This treatment led to accumulation of osmoprotectants, such as altrose, maltitol, ascorbic acid and proline. Thus, these osmoprotectants are not unique to seed plants but have evolved at an early phase of the colonization of land by plants.


Bryophyte Drought stress Lignins Metabolomics Osmoprotectant Proline 



Gas chromatography–mass spectrometry



This work was supported by the DFG Research Training Group GRK1305 “Signal Systems in Plant Model Organisms”, and by the German Federal Ministry of Education and Research BMBF (FRISYS 0313921). Support from the Freiburg Institute for Advanced Studies (FRIAS) is acknowledged.


  1. Beike AK, Decker EL, Frank W, Lang D, Vervliet-Scheebaum M, Zimmer AD, Reski R (2010) Applied Bryology—Bryotechnology. Trop Bryol 31:22–32Google Scholar
  2. Crowe JH, Crowe LM, Carpenter JF, Aurell Wistrom C (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10PubMedGoogle Scholar
  3. Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol 176:275–287PubMedCrossRefGoogle Scholar
  4. Damiani I, Morreel K, Danoun S, Goeminne G, Yahiaoui N, Marque C, Kopka J, Messens E, Goffner D, Boerjan W, Boudet AM, Rochange S (2005) Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem. Plant Mol Biol 59:753–769PubMedCrossRefGoogle Scholar
  5. Decker EL, Frank W, Sarnighausen E, Reski R (2006) Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biol 8:397–405PubMedCrossRefGoogle Scholar
  6. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769PubMedCrossRefGoogle Scholar
  7. Fiehn O (2006) Metabolite profiling in Arabidopsis. In: Salinas J, Sanchez-Serrano JJ (eds) Arabidopsis protocols, 2nd edn. Methods in molecular biology series. Humana Press, Totowa, pp 439–447Google Scholar
  8. Filippi SB, Azevedo RA, Sodek L, Mazzafera P (2007) Allantoin has a limited role as nitrogen source in cultured coffee cells. J Plant Physiol 164:544–552PubMedCrossRefGoogle Scholar
  9. Frank W, Decker EL, Reski R (2005) Molecular tools to study Physcomitrella patens. Plant Biol 7:220–227PubMedCrossRefGoogle Scholar
  10. Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK (2008) Metabolomics of temperature stress. Physiol Plant 132:220–235PubMedGoogle Scholar
  11. Handa S, Handa AK, Hasegawa PM, Bressan RA (1986) Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol 80:938–945PubMedCrossRefGoogle Scholar
  12. Harrigan GG, Stork LG, Riordan SG, Ridley WP, Macisaac S, Halls SC, Orth R, Rau D, Smith RG, Wen L, Brown WE, Riley R, Sun D, Modiano S, Pester T, Lund A, Nelson D (2007) Metabolite analyses of grain from maize hybrids grown in the United States under drought and watered conditions during the 2002 field season. J Agric Food Chem 55:6169–6176PubMedCrossRefGoogle Scholar
  13. Heintz D, Wurtz V, High AA, van Dorsselaer A, Reski R, Sarnighausen E (2004) An efficient protocol for the identification of protein phosphorylation in a seedless plant, sensitive enough to detect members of signalling cascades. Electrophoresis 25:1149–1159PubMedCrossRefGoogle Scholar
  14. Heintz D, Erxleben A, High AA, Wurtz V, Reski R, van Dorsselaer A, Sarnighausen E (2006) Rapid alteration of the phosphoproteome in the moss Physcomitrella patens after cytokinin treatment. J Proteome Res 5:2283–2293PubMedCrossRefGoogle Scholar
  15. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438PubMedCrossRefGoogle Scholar
  16. Hosp J, Tashpulatov A, Roessner U, Barsova E, Katholnigg H, Steinborn R, Melikant B, Lukyanov S, Heberle-Bors E, Touraev A (2007) Transcriptional and metabolic profiles of stress-induced, embryogenic tobacco microspores. Plant Mol Biol 63:137–149PubMedCrossRefGoogle Scholar
  17. Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678PubMedCrossRefGoogle Scholar
  18. Kajikawa M, Hirai N, Hashimoto T (2009) A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69:287–298PubMedCrossRefGoogle Scholar
  19. Kamisugi Y, Schlink K, Rensing SA, Schween G, von Stackelberg M, Cuming AC, Reski R, Cove DJ (2006) The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res 34:6205–6214PubMedCrossRefGoogle Scholar
  20. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168PubMedCrossRefGoogle Scholar
  21. Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of delta-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394PubMedGoogle Scholar
  22. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638PubMedCrossRefGoogle Scholar
  23. Krzaczkowski L, Wright M, Gairin JE (2008) Bryophytes, a potent source of drugs for tomorrow’s medicine? Med Sci 24:947–953Google Scholar
  24. Lang D, Eisinger J, Reski R, Rensing SA (2005) Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism in mosses. Plant Biol 7:238–250PubMedCrossRefGoogle Scholar
  25. Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549PubMedCrossRefGoogle Scholar
  26. Lang EGE, Mueller SJ, Hoernstein SNW, Porankiewicz-Asplund J, Vervliet-Scheebaum M, Reski R (2011) Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as basis for sub-cellular proteomics. Plant Cell Rep 30:205–215PubMedCrossRefGoogle Scholar
  27. Levi A, Paterson AH, Cakmak I, Saranga Y (2011) Metabolite and mineral analyses of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits. Physiol Plant 141:265–275PubMedCrossRefGoogle Scholar
  28. McCleary JA, Sypherd PS, Walkington DL (1960) Mosses as possible sources of antibiotics. Science 131:108PubMedCrossRefGoogle Scholar
  29. Mondolot L, La Fisca P, Buatois B, Talansier E, De Kochko A, Campa C (2006) Evolution of caffeoylquinic acid content and histolocalization during Coffea canephora leaf development. Ann Bot 98:33–40PubMedCrossRefGoogle Scholar
  30. Montenegro G, Portaluppi MC, Salas FA, Diaz MF (2009) Biological properties of the Chilean native moss Sphagnum magellanicum. Biol Res 42:233–237PubMedCrossRefGoogle Scholar
  31. Mues R (2000) Chemical constituents and biochemistry. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 150–181Google Scholar
  32. Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263PubMedCrossRefGoogle Scholar
  33. Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134PubMedCrossRefGoogle Scholar
  34. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69PubMedCrossRefGoogle Scholar
  35. Reski R (1998) Development, genetics and molecular biology of mosses. Bot Acta 111:1–15Google Scholar
  36. Reski R, Abel WO (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165:354–358CrossRefGoogle Scholar
  37. Richardt S, Timmerhaus G, Lang D, Qudeimat E, Correa LG, Reski R, Rensing SA, Frank W (2010) Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Mol Biol 72:27–45PubMedCrossRefGoogle Scholar
  38. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696PubMedCrossRefGoogle Scholar
  39. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29PubMedCrossRefGoogle Scholar
  40. Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56PubMedCrossRefGoogle Scholar
  41. Sakai K, Ichikawa T, Yamada K, Yamashita M, Tanimoto M, Hikita A, Ijuin Y, Kondo K (1988) Antitumor principles in mosses: the first isolation and identification of maytansinoids, including a novel 15-methoxyansamitocin P-3. J Nat Prod 51:845–850PubMedCrossRefGoogle Scholar
  42. Scher JM, Zapp J, Becker H (2003) Lignan derivatives from the liverwort Bazzania trilobata. Phytochemistry 62:769–777PubMedCrossRefGoogle Scholar
  43. Schulte J, Erxleben A, Schween G, Reski R (2006) High throughput metabolic screen of Physcomitrella transformants. Bryologist 109:247–256CrossRefGoogle Scholar
  44. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314PubMedCrossRefGoogle Scholar
  45. Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95:4368–4373PubMedCrossRefGoogle Scholar
  46. Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81:211–223PubMedCrossRefGoogle Scholar
  47. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280PubMedCrossRefGoogle Scholar
  48. Treichel S, Brinckmann E, Scheitler B, von Willert DJ (1984) Ocurrence and changes of proline content in plants in the southern Namib Desert in relations to increasing and decreasing drought. Planta 1652:236–242CrossRefGoogle Scholar
  49. von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114CrossRefGoogle Scholar
  50. Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H, Kuang TY, Pei ZM, Shen SH, He YK (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149:1739–1750PubMedCrossRefGoogle Scholar
  51. Weckwerth W (2009) Metabolomics: integrating the metabolome and the proteome for systems biology. Annu Plant Rev 35:258–289Google Scholar
  52. Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285PubMedCrossRefGoogle Scholar
  53. Wolucka BA, van Montagu M (2003) GDP-mannose 3′, 5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490PubMedCrossRefGoogle Scholar
  54. Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, Stewart NR, Syrenne RD, Yang X, Gao P, Shi W, Doeppke C, Sykes RW, Burris JN, Bozell JJ, Cheng MZ, Hayes DG, Labbe N, Davis M, Stewart CN Jr, Yuan JS (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics 10(Suppl 11):S3PubMedCrossRefGoogle Scholar
  55. Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anika Erxleben
    • 1
    • 2
  • Arthur Gessler
    • 3
    • 4
  • Marco Vervliet-Scheebaum
    • 1
  • Ralf Reski
    • 1
    • 3
    • 5
    • 6
  1. 1.Plant BiotechnologyFaculty of Biology, University of FreiburgFreiburgGermany
  2. 2.Institute of Pharmaceutical Sciences, Pharmaceutical BioinformaticsUniversity of FreiburgFreiburgGermany
  3. 3.ZBSA, Center for Biological Systems Analysis, University of FreiburgFreiburgGermany
  4. 4.ZALF, Institute for Landscape Biogeochemistry, Leibniz-Center for Agricultural Landscape ResearchMünchebergGermany
  5. 5.FRISYS, Freiburg Initiative for Systems BiologyFreiburgGermany
  6. 6.FRIAS, Freiburg Institute for Advanced StudiesFreiburgGermany

Personalised recommendations