Skip to main content
Log in

The rice thylakoid lumenal cyclophilin OsCYP20-2 confers enhanced environmental stress tolerance in tobacco and Arabidopsis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The role that the putative thylakoid lumenal cyclophilin (CYP) CYP20-2 locates in the thylakoid, and whether CYP20-2 is an essential gene, have not yet been elucidated. Here, we show that CYP20-2 is well conserved in several photosynthetic plants and that the transcript level of the rice OsCYP20-2 gene is highly regulated under abiotic stress. We found that ectopic expression of rice OsCYP20-2 in both tobacco and Arabidopsis confers enhanced tolerance to osmotic stress and extremely high light. Based on these results, we suggest that although the exact biochemical function of OsCYP20-2 in the thylakoid lumen (TL) remains unclear, it may be involved in photosynthetic acclimation to help plants cope with environmental stress; the OsCYP20-2 gene may be a candidate for enhancing multiple abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn JC, Kim DW, You YN, Seok MS, Park JM, Hwang H, Kim B-G, Luan S, Park H-S, Cho HS (2010) Classification of rice (Oryza sativa L. japonica Nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC Plant Biol 10:253

  • Aron DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  Google Scholar 

  • Bartlett SG, Grossman AR, Chua N-H (1982) In vitro synthesis and uptake of cytoplasmically-synthesized chloroplast proteins. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, New York, pp 1081–1091

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive methods for the quantification of microgram quantities utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Breiman A, Fawcett TW, Ghirardi ML, Mattoo AK (1992) Plant organelles contain distinct peptidyl propyl cis, trans-isomerases. J Biol Chem 267:21293–21296

    PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Edvardsson A, Eshaghi S, Vener AV, Andersson B (2003) The major peptidyl-prolyl isomerase activity in thylakoid lumen of plant chloroplast belongs to a novel cyclophilin TLP20. FEBS Lett 542:137–141

    Article  PubMed  CAS  Google Scholar 

  • Edvardsson A, Shapiquzov A, Petersson UA, Schröder WP, Vener AV (2007) Immunophilin AtFKBP13 sustains all peptidyl-proryl isomerase activity in the thylakoid lumen from Arabidopsis thaliana deficient in AtCYP20–2. Biochemistry 46:9432–9442

    Article  PubMed  CAS  Google Scholar 

  • Edward JG, Wysocka J (2010) Flipping MLL1’s switch one porline at a time. Cell 141:1108–1109

    Article  Google Scholar 

  • Endo T, Shikanai T, Takabayashi A, Asada K, Sato F (1999) The role of chloroplastic NADPH dehydrogenase in photo-protection. FEBS Lett 457:5–8

    Article  PubMed  CAS  Google Scholar 

  • Galat A (2003) Peptidylprolyl cis/trans isomerase (immunophilins): biological diversity–targets–functions. Curr Top Med Chem 3:1315–1347

    Article  PubMed  CAS  Google Scholar 

  • Godoy AV, Lazzaro AS, Casalongue CA, San Segundo B (2000) Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions. Plant Sci 152:123–134

    Article  CAS  Google Scholar 

  • Gopalan G, He Z, Balmer Y, Romano P, Gupta R, Héroux A, Buchanan BB, Swaminathan K, Luan S (2004) Structural analysis uncovers a role for redox in regulating FKBP13, an immnunophilin of the chloroplast thylakoid lumen. Proc Natl Acad Sci 101:13945–13950

    Article  PubMed  CAS  Google Scholar 

  • Goulas E, Schuber M, Kieselbach T, Kleczkowski LA, Gardeström P, Schröder W, Hurry V (2006) The chloroplast lumen and stromal proteomics of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J 47:720–734

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Mould RM, He Z, Luan S (2002) A Chloroplast FKBP interacts with and affects the accumulation of Rieske subunit of cytochrome bf complex. Proc Natl Acad Sci 99:15806–15811

    Article  PubMed  CAS  Google Scholar 

  • He Z, Li L, Luan S (2004) Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol 134:1248–1267

    Article  PubMed  CAS  Google Scholar 

  • Horváth EM, Peter SO, Joët T, Rumeau D, Cournac L et al (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1350

    Article  PubMed  Google Scholar 

  • Ingelsson B, Shapiguzov A, Kieselbach T, Vener AV (2009) Peptidyl-prolyl isomerase activity in chloroplast thylakoid lumen is a dispensible function of immunophilins in Arabidopsis thaliana. Plant Cell Physiol 50:1801–1814

    Article  PubMed  CAS  Google Scholar 

  • Kallen J, Spitzfaden C, Zurini MG, Wider G, Widmer H, Wuthrich K, Walkinshaw MD (1991) Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Nature 353:276–279

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761

    Article  PubMed  CAS  Google Scholar 

  • Lima A, Lima S, Wong JH, Phillips RS, Buchanan BB, Luan S (2006) A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II super complex in Arabidopsis thaliana. Proc Natl Acad Sci 103:12631–12636

    Article  PubMed  CAS  Google Scholar 

  • Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ (2008) Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 7:1609–1638

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnol 23:718–723

    Article  CAS  Google Scholar 

  • Munné-Bosch S, Shikanai T, Asada K (2005) Enhanced ferredoxin-dependent cyclic electron flow around photosystem I and α-tocopherol quinine accumulation in water-stressed nbhB-inactivated tobacco mutants. Planta 222:502–511

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DW (1997) Genedoc: analysis and visualization of genetic variation. Embnew News 4:14

    Google Scholar 

  • Peng L, Ma J, Chi W, Guo J, Zhu S, Lu Q, Lu C, Zhang L (2006) Low PSII Accumulation1 is involved in the efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell 18:955–969

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T (2009) Efficient operation of NADP dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21:3623–3640

    Article  PubMed  CAS  Google Scholar 

  • Romano PGN, Edvardsson A, Ruban AV, Andersson B, Vener AV, Gray JE, Horton P (2004) Arabidopsis AtCYP20–2 is a light-regulated cyclophilin-type peptidyl-prolyl cis-trans isomerase associated with the photosynthetic membranes. Plant Physiol 134:1244–1247

    Article  PubMed  CAS  Google Scholar 

  • Romano PGN, Gray J, Horton P, Luan S (2005) Plant immunophilins functional versatility beyond protein maturation. New Phytol 166:753–769

    Article  PubMed  CAS  Google Scholar 

  • Schreiber SL (1991) Chemistry and biology of the immuophilins and their immuno-suppressive ligands. Science 251:283–287

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Peterson UA, Haas B, Funk C, Schröder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    Article  PubMed  CAS  Google Scholar 

  • Shapiguzov A, Edvardsson A, Vener AV (2006) Profound redox sensitivity of peptidyl-prolyl isomerase activity in Arabidopsis thylakoid lumen. FEBS Lett 580:3671–3676

    Article  PubMed  CAS  Google Scholar 

  • Sharmar AD, Singh P (2003) Effect of water stress on expression of a 20 kD cyclophilin-like protein in drought susceptible and tolerant cultivars of Sorgum. J Plant Biochem Biotech 12:77–80

    Google Scholar 

  • Sirpiö S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener AV, Scheller HV, Jensen PE, Haldrup A, Aro EM (2008) AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II. Plant J 55:639–651

    Article  PubMed  Google Scholar 

  • Sirpiö S, Holmström M, Battchikova N, Aro EM (2009) AtCYP20–2 is an auxiliary protein of the chloroplast NADPH dehydrogenase complex. FEBS Lett 583:2355–2358

    Article  PubMed  Google Scholar 

  • Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeek P (1986) The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46:365–375

    Article  PubMed  CAS  Google Scholar 

  • Vespa L, Vachon G, Berger F, Perazza D, Faure J-D, Herzog M (2004) The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication. Plant Physiol 134:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J, Mi H (2006) Chloroplastic NADPH dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Song J, Milne TA, Wang GG, Li H, Allis CD, Patel DJ (2010) Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 25:1183–1194

    Article  Google Scholar 

  • Zydowsky LD, Etzkorn FA, Chang HY, Ferguson SB, Stolz LA, Ho SI, Walsh CT (1992) Active site mutants of human cyclophilin-A separate peptidyl-prolyl isomerase activity from cyclosporine-A binding and calcineurin inhibition. Protein Sci 1:1092–1099

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yeonil Park (Chungnam Univ. Korea) for PEA technical assistance. This work was supported by the Biogreen 21 Project (PJ0066472010) of RDA NAAS, KRIBB Research Initiative Program and the Cabbage Genomics Assisted Breeding Supporting Center Research Programs by Ministry for Food, Agriculture, Forestry and Fisheries of the Korean Goverment to HS Cho.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Cheul Ahn or Hye Sun Cho.

Additional information

Communicated by J. S. Shin.

S.-K. Kim and Y. N. You have contributed equally in this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 28 kb)

Supplementary material 2 (ppt 1637 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SK., You, Y.N., Park, J.C. et al. The rice thylakoid lumenal cyclophilin OsCYP20-2 confers enhanced environmental stress tolerance in tobacco and Arabidopsis . Plant Cell Rep 31, 417–426 (2012). https://doi.org/10.1007/s00299-011-1176-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1176-x

Keywords

Navigation