Skip to main content
Log in

Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Pepper is known to be a recalcitrant species to genetic transformation via Agrobacterium tumefaciens. A. rhizogenes-mediated transformation offers an alternative and rapid possibility to study gene functions in roots. In our study, we developed a new and efficient system for A. rhizogenes transformation of the cultivated species Capsicum annuum. Hypocotyls and foliar organs (true leaves and cotyledons) of Yolo Wonder (YW) and Criollo de Morelos 334 (CM334) pepper cultivars were inoculated with the two constructs pBIN-gus and pHKN29-gfp of A. rhizogenes strain A4RS. Foliar explants of both pepper genotypes infected by A4RS-pBIN-gus or A4RS-pHKN29-gfp produced transformed roots. Optimal results were obtained using the combination of the foliar explants with A4RS-pHKN29-gfp. 20.5% of YW foliar explants and 14.6% of CM334 foliar explants inoculated with A4RS-pHKN29-gfp produced at least one root expressing uniform green fluorescent protein. We confirmed by polymerase chain reaction the presence of the rolB and gfp genes in the co-transformed roots ensuring that they integrated both the T-DNA from the Ri plasmid and the reporter gene. We also demonstrated that co-transformed roots of YW and CM334 displayed the same resistance response to Phytophthora capsici than the corresponding untransformed roots. Our novel procedure to produce C. annuum hairy roots will thus support the functional analysis of potential resistance genes involved in pepper P. capsici interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarrouf J, Garcin A, Lizzi Y, El Maataoui M (2008) Immunolocalization and histocytopathological effects of Xanthomonas arboricola pv pruni on naturally infected leaf and fruit tissues of peach (Prunus persica L. Batsch). J Phytopathology 156:338–345

    Article  Google Scholar 

  • Alpizar E, Dechamp E, Espeout S, Royer M, Lecouls AC, Nicole M, Bertrand B, Lashermes P, Etienne H (2006) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959–967

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolidecomposition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26:599–609

    Article  PubMed  CAS  Google Scholar 

  • Baranski R, Klocke E, Schumann G (2006) Green fluorescent protein as an efficient selection marker for Agrobacterium rhizogenes mediated carrot transformation. Plant Cell Rep 25:190–197

    Article  PubMed  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Black LL, Green SK, Hartman G.L, Poulos JM (1991) Pepper diseases: a field guide. In: Asian vegetable research and development center. AVRDC publication, p 98

  • Bonnet J, Danan S, Boudet C, Barchi L, Sage-Palloix AM, Caromel B, Palloix A, Lefebvre V (2007) Are the polygenic architectures of resistance to Phytophthora capsici and P. parasitica independent in pepper? Theor Appl Genet 115:253–264

    Article  PubMed  Google Scholar 

  • Cai D, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grunler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay T, Roy S, Mitra A, Maiti MK (2011) Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation. Plant Cell Rep 30:485–493

    Article  PubMed  CAS  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Chovelon V, Restier V, Dogimont C, Aarrouf J (2008) Histological study of shoot organogenesis in melon (Cucumis melo L.) after genetic transformation. Pitrat M (ed) Cucurbitaceae. In: Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Avignon (France), May 21–24, pp 633–637

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  • Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorrhizal tree. Mol Plant Microbe Interact 8:532–537

    Article  PubMed  CAS  Google Scholar 

  • Djian-Caporalino C, Pijarowski L, Januel A, Lefebvre V, Daubèze A, Palloix A, Dalmasso A, Abad P (1999) Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in pepper (Capsicum annuum L.). Theor Appl Genet 99:496–502

    Article  Google Scholar 

  • Djian-Caporalino C, Lefebvre V, Sage-Daubèze AM, Palloix A (2007) Capsicum. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement, vol 3 vegetable crops. CRC Press, USA, pp 185–243

    Google Scholar 

  • Frary A, Hamilton CM (2001) Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res 10:121–132

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602

    Article  PubMed  CAS  Google Scholar 

  • Fulton J, Chungwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and herbaceous plants. Plant Mol Biol 13:207–209

    Article  CAS  Google Scholar 

  • Gaudin V, Vrain T, Jouanin L (1994) Bacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 32:11–29

    CAS  Google Scholar 

  • Gherbi H, Nambiar-Veetil M, Zhong C, Félix J, Autran D, Girardin R, Vaissayre V, Auguy F, Bogusz D, Franche C (2008) Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. MPMI 2:518–524

    Article  Google Scholar 

  • Hamill JD, Lidgett AJ (1997) Hairy root cultures—opportunities and key protocols for studies in metabolic engineering In: Doran PM (ed) Hairy roots culture and applications. Harwood Academic Publishers, Amsterdam, p 239

  • Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116

    Article  PubMed  CAS  Google Scholar 

  • Hwang CF, Bhakta AV, Truesdell GM, Pudlo WM, Williamson VM (2000) Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant cell 12:1319–1329

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jouanin L, Tourneur J, Casse-Delbart F (1986) Restriction maps and homologies of the three plasmids of Agrobacterium rhizogenes strain A4. Plasmid 16:124–134

    Article  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci 14:373–382

    Article  PubMed  CAS  Google Scholar 

  • Khan MW, Haider SH (1991) Comparative damage potential and reproduction efficiency of Meloidogyne javanica and races of M. incognita on tomato and eggplant. Nematologica 37:293–303

    Article  Google Scholar 

  • Kifle S, Shao M, Jung C, Cai D (1999) An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L.). Plant Cell Rep 18:514–519

    Article  CAS  Google Scholar 

  • Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant Microbe Interact 16:663–668

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Satyanarayana KV, Itty SS, Indu EP, Giridhar P, Chandrashekar A, Ravishankar GA (2005) Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype. Plant Cell Rep 25:214–222

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco t cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in formation of hairy root. Physiol Plant 100:403–473

    Google Scholar 

  • Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and applications of non-toxic S65T-type green fluorescent protein in living plants. Plant J 18:455–463

    Article  PubMed  CAS  Google Scholar 

  • Oldacres AM, Newbury HJ, Puddephat IJ (2005) Identification and characterization of QTL controlling Agrobacterium-mediated transient and stable transformation of Brassica oleracea. Plant Biotechnol J 1:59–69

    Google Scholar 

  • Pegard A, Brizzard G, Fazari A, Soucaze O, Abad P, Djian-Caporalino C (2004) Histological characterization of resistance to different root-knot Nematode species related to phenolics accumulation in Capsicum annuum. Nematology 95:158–165

    Google Scholar 

  • R version 2.9.0, Copyright (©) The R Foundation for Statistical Computing (2009) ISBN 3-900051-07-0

  • Remeeus PM, van Bezooijen J, Wijbrandi J, van Bezooijen J (1998) In vitro testing is a reliable way to screen the temperature sensitivity of resistant tomatoes against Meloidogyne incognita. In: Proceedings of 5th international symposium on crop protection. Universiteit Gent Belgium, vol 63, pp 635–640

  • Rizzo DM, Garbelotto M, Hansen EM (2005) Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu Rev Phytopathol 43:309–335

    Article  PubMed  Google Scholar 

  • Sasser JN (1977) Worldwide dissemination and importance of the rootknot nematode, Meloidogyne spp. J Nematol 22:585–589

    Google Scholar 

  • Schmidt JF, Moore MD, Pelcher LE (2007) High efficiency Agrobacterium rhizogenes-mediated transformation of Saponaria vaccaria L. (caryophyllaceae) using fluorescence selection. Plant Cell Rep 26:1547–1554

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi S, Yamakawa T, Kodama T, Smith SM, Yeoman MM (1996) Establishment of hairy root culture of chilli pepper (Capsicum frutescens). Plant Tiss Cult Lett 13:219–221

    Article  CAS  Google Scholar 

  • Shahin EA, Spielmann A, Sukhapinda K, Simpson RB, Yashar M (1986) Transformation of cultivated alfalfa using disarmed Agrobacterium tumefaciens. Crop Sci. 26:1235–1239

    Article  CAS  Google Scholar 

  • Spiral J, Thierry C, Paillard M, Pétiad V (1993) Obtention de plantules de Coffea canephora Pierre (Robusta) transformées par Agrobacterium rhizogenes. CR Acad Sci 316:1–6

    CAS  Google Scholar 

  • Tepfer M, Casse-Delbart F (1987) Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol Sci 4:24–28

    PubMed  CAS  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    Article  CAS  Google Scholar 

  • Terada R, Shimamoto K (1990) Expression of CaMV35S-GUS gene in transgenic rice plants. Mol Gen Genet 220:389–392

    Article  CAS  Google Scholar 

  • Wolf D, Matzevitch T, Steinitz B, Zelcer A (2001) Why is it difficult to obtain transgenic pepper plants? Acta Hortic 560:229–233

    CAS  Google Scholar 

  • Yamakawa T, Sekigushi S, Kodama T, Smith SM, Yeoman MM (1998) Transformation of chilli pepper (Capsicum frutescens) with a Phenylalanine Ammonia-Lyase gene. Plant Biotechnol 15:189–193

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Hervé Etienne (CIRAD, Montpellier, France) and Claudine Franche (IRD, Montpellier, France) for the generous gift of the A. rhizogenes A4RS strain carrying pBIN-gus and pHKN29-gfp, respectively. This work was financially supported by the Genoplante Project PhytoSol-2 that resides under the ANR call. Stéphanie Mallard received a fellowship funded by the ANR, Patricio Castro received a fellowship funded by the Secreteria Nacional de Cienca y Tecnologia del Ecuador (SENACYT) from Ecuador.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Aarrouf or V. Lefebvre.

Additional information

Communicated by P. Ozias-Akins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarrouf, J., Castro-Quezada, P., Mallard, S. et al. Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes. Plant Cell Rep 31, 391–401 (2012). https://doi.org/10.1007/s00299-011-1174-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1174-z

Keywords

Navigation