Skip to main content

Advertisement

Log in

Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Sarpo Mira, a potato variety with high resistance against the late blight pathogen Phytophthora infestans, is being used in breeding programs to increase late blight resistance in commercial varieties. Discovering genes that are important for P. infestans resistance will assist in the development of molecular markers for the selection of new resistant cultivars and the use of resistant varieties will reduce the environmental, health and financial costs associated with the use of pesticides. Using complementary DNA amplified fragment length polymorphism analyses, differentially expressed genes involved in the potato-P. infestans interaction were identified in the susceptible Bintje and in the resistant Sarpo Mira potato cultivars. Forty-eight differentially expressed transcript derived fragments (TDFs) were cloned and sequenced. The expression profiles of some of these genes were analyzed in detail using quantitative RT-PCR at seven time points: 1, 4, 17, 24, 30, 41 and 65 hours after inoculation (hai). We found that five transcripts with homologies to pathogenesis/defense-related genes and two TDFs with homology to transcription factors were significantly induced to higher levels in the resistant cultivar at very early stages of the infection (1 hai). Interestingly, most of these genes showed different expression profiles throughout the whole infection process between both cultivars. Particularly during its biotrophic growth phase, P. infestans triggered the down-regulation of infection responsive genes in the susceptible but not in the resistance cultivar. Our results suggest that these newly identified early-induced transcripts may be good candidates for conferring Sarpo Mira’s resistance to late blight and they could be useful molecular markers for the selection of new resistant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CT:

Cycle threshold

hai:

Hours after inoculation

HSTF:

Heat shock transcription factor

HR:

Hypersensitive response

MAPK:

Mitogen-activated protein kinase

qPCR:

Quantitative PCR

PR:

Pathogenesis related

R:

Resistance

RT-qPCR:

Quantitative RT-PCR

SAR:

Systemic acquired resistance

TDF:

Transcript-derived fragment

References

  • Bachem CW, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Bertini L, Leonardi L, Caporale C, Tucci M, Cascone N, Di Berardino I, Buonocore V, Caruso C (2003) Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Sci 164:1067–1078

    Article  CAS  Google Scholar 

  • Beyer K, Binder A, Boller T, Collinge M (2001) Identification of potato genes induced during colonization by Phytophthora infestans. Mol Plant Pathol 2:125–134

    Article  PubMed  CAS  Google Scholar 

  • Birch PRJ, Kamoun S (2000) Studying interaction transcriptomes: coordinated analyses of gene expression during plant–microorganism interactions. In: Wood R (ed) New technologies for life sciences: a trends guide. Elsevier Science, New York, pp 77–82

    Google Scholar 

  • Böhm J, Hahn A, Schubert R, Bahnweg G, Adler N, Nechwatal J, Oehlmann R, Obszwald W (1999) Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants. J Phytopathol 147:409–416

    Article  Google Scholar 

  • Büchter R, Stromberg A, Schmelzer E, Kombrink E (1997) Primary structure and expression of acidic (class II) chitinase in potato. Plant Mol Biol 35:749–761

    Article  PubMed  Google Scholar 

  • Caten CE, Jinks JL (1968) Spontaneous variability in isolates of Phytophthora infestans. I. Cultural variation. Can J Bot 46:329–348

    Article  Google Scholar 

  • Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46:521–529

    Article  PubMed  CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  PubMed  CAS  Google Scholar 

  • Colon LT, Turkensteen LJ, Prummel W, Budding DJ, Hoogendoorn J (1995) Durable resistance to late blight (Phytophthora infestans) in old potato cultivars. Eur J Plant Pathol 101:387–397

    Article  Google Scholar 

  • Cvitanich C, Judelson HS (2003) Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr Genet 42:228–235

    PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Daurelio LD, Petrocelli S, Blanco F, Holuigue L, Ottado J, Orellano EG (2011) Transcriptome analysis reveals novel genes involved in nonhost response to bacterial infection in tobacco. J Plant Physiol 168:382–391

    Article  PubMed  CAS  Google Scholar 

  • Dellagi A, Heilbronn J, Avrova AO, Montesano M, Palva ET, Stewart HE, TothIK CookeDEL, Lyon GD, Birch PRJ (2000) A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol Plant Microbe Interact 13:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Dhondt S, Gouzerh G, Müller A, Legrand M, Heitz T (2002) Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid. Plant J 32:749–762

    Article  PubMed  CAS  Google Scholar 

  • El-Komy MH, Abou-taleb EM, Aboshosha SM, El-sherif EM (2010) Differential expression of potato pathogenesis-related proteins upon infection with late blight pathogen: a case study expression of potato osmotin-like protein. Int J Agric Biol 12:179–186

    CAS  Google Scholar 

  • Eschen-Lippold L, Rothe G, Stumpe M, Gobel C, Feussner I, Rosahl S (2007) Reduction of divinyl ether-containing polyunsaturated fatty acids in transgenic potato plants. Phytochem 68:797–801

    Article  CAS  Google Scholar 

  • Eschen-Lippold L, Draeger T, Teichert A, Wessjohann L, Westermann B, Rosahl S, Arnold N (2009) Antioomycete activity of gamma-oxocrotonate fatty acids against P. infestans. J Agric Food Chem 57:9607–9612

    Article  PubMed  CAS  Google Scholar 

  • Esfahani K, Motallebi M, Zamani MR, Sohi HH, Jourabchi E (2010) Transformation of potato (Solanum tuberosum cv. Savalan) by chitinase and β-1,3-glucanase genes of mycoparasitic fungi towards improving resistance to Rhizoctonia solani AG-3. Iran J Biotechnol 8:73–81

    CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Fabritius AL, Cvitanich C, Judelson HS (2002) Stage-specific gene expression during sexual development in Phytophthora infestans. Mol Microbiol 45:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Faino L, Carli P, Testa A, Cristinzio G, Frusciante L, Ercolano M (2010) Potato R1 resistance gene confers resistance against Phytophthora infestans in transgenic tomato plants. Eur J Plant Pathol 128:233–241

    Article  CAS  Google Scholar 

  • Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9:385–402

    Article  PubMed  Google Scholar 

  • Fry WE, Goodwin SB (1997) Re-emergence of potato and tomato late blight in the United States. Plant Dis 81:1349–1357

    Article  Google Scholar 

  • Gebhardt C, Valkonen JP (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39:79–102

    Article  PubMed  CAS  Google Scholar 

  • Golas TM, Sikkema A, Gros J, Feron RM, van den Berg RG, van der Weerden GM, Mariani C, Allefs JJ (2010) Identification of a resistance gene Rpi-dlc1 to Phytophthora infestans in European accessions of Solanum dulcamara. Theor Appl Genet 120:797–808

    Article  PubMed  Google Scholar 

  • Graham LS, Sticklen MB (1994) Plant chitinases. Can J Bot 72:1057–1083

    Article  CAS  Google Scholar 

  • Halim VA, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S (2007) Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. Mol Plant Microbe Interact 20:1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yagi M, Kusano T, Sano H (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet 263:30–37

    Article  PubMed  CAS  Google Scholar 

  • Haverkort A, Boonekamp P, Hutten R, Jacobsen E, Lotz L, Kessel G, Visser R, van der Vossen E (2008) Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res 51:47–57

    Article  Google Scholar 

  • Haverkort A, Struik P, Visser R, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52:249–264

    Article  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Henriquez MA, Daayf F (2010) Identification and cloning of differentially expressed genes involved in the interaction between potato and Phytophthora infestans using a subtractive hybridization and CDNA-AFLP combinational approach. J Integr Plant Biol 52:453–467

    PubMed  CAS  Google Scholar 

  • Hoegen E, Stromberg A, Pihlgren U, Kombrink E (2002) Primary structure and tissue-specific expression of the pathogenesis-related protein PR-1b in potato. Mol Plant Pathol 3:329–345

    Article  PubMed  CAS  Google Scholar 

  • Hohl HR, Iselin K (1984) Strains of Phytophthora infestans from Switzerland with A2 mating type behaviour. T Brit Mycol Soc 83:529–530

    Article  Google Scholar 

  • Ibeas JI, Yun D-J, Damsz B, Narasimhan ML, Uesono Y, Ribas JC, Lee H, Hasegawa PM, Bressan RA, Pardo JM (2001) Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant J 25:271–280

    Article  PubMed  CAS  Google Scholar 

  • Inglis DA, Johnson DA, Legard DE, Fry WE, Hamm PB (1996) Relative resistances of potato clones in response to new and old populations of Phytophthora infestans. Plant Dis 80:575–578

    Article  Google Scholar 

  • Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  PubMed  CAS  Google Scholar 

  • Judelson HS, Ah-Fong AM, Aux G, Avrova AO, Bruce C, Cakir C, da Cunha L, Grenville-Briggs L, Latijnhouwers M, Ligterink W, Meijer HJ, Roberts S, Thurber CS, Whisson SC, Birch PR, Govers F, Kamoun S, van West P, Windass J (2008) Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21:433–447

    Article  PubMed  CAS  Google Scholar 

  • Kasprzewska A (2003) Plant chitinases-regulation and function. Cell Mol Biol Lett 8:809–824

    PubMed  CAS  Google Scholar 

  • Kim CY, Zhang S (2004) Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J 38:142–151

    Article  PubMed  CAS  Google Scholar 

  • Kombrink E, Somssich IE (1997) Pathogenesis-related proteins and plant defense. In: Carroll G, Tudzynski P (eds) The Mycota, Volume V Part A: Plant Relationships. Springer Verlag, Heidelberg, pp 107–128

    Google Scholar 

  • Kombrink E, Schroder M, Hahlbrock K (1988) Several “pathogenesis-related” proteins in potato are 1, 3-beta-glucanases and chitinases. Proc Natl Acad Sci USA 85:782–786

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Schöffl F (2009) Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant 2:152–165

    Article  PubMed  CAS  Google Scholar 

  • La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Heitz T (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J 44:810–825

    Article  PubMed  CAS  Google Scholar 

  • La Camera S, Balagué C, Göbel C, Geoffroy P, Legrand M, Feussner I, Roby D, Heitz T (2009) The Arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol Plant Microbe Interact 22:469–481

    Article  PubMed  CAS  Google Scholar 

  • Landbrugets Kartoffelfond (2004) Sortsudstilling November 2004–Resultater fra gadbjerg og Vandel 2002–2004

  • Lang J (2001) Notes of a Potato Watcher. Texas A and M University Press, College Station

    Google Scholar 

  • Li R, Wu N, Fan Y, Song B (1999) Transgenic potato plants expressing osmotin gene inhibits fungal development in inoculated leaves. Chin J Biotechnol 15:71–75

    PubMed  CAS  Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Nati Acad Sci USA 91:1888–1892

    Article  CAS  Google Scholar 

  • Llorente B, Bravo-Almonacid F, Cvitanich C, Orlowska E, Torres HN, Flawia MM, Alonso GD (2010) A quantitative real-time PCR method for in planta monitoring of Phytophthora infestans growth. Lett Appl Microbiol 51:603–610

    Article  PubMed  CAS  Google Scholar 

  • Malcolmson JF, Black W (1966) New R genes in Solanum demissum Lindl. and their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica 15:199–203

    Article  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  PubMed  CAS  Google Scholar 

  • Matos AR, Gigon A, Laffray D, Pêtres S, Zuily-Fodil Y, Pham-Thi AT (2008) Effects of progressive drought stress on the expression of patatin-like lipid acyl hydrolase genes in Arabidopsis leaves. Physiol Plantarum 134:110–120

    Article  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol 88:936–942

    Article  PubMed  CAS  Google Scholar 

  • Melgar J, Abney T, Vierling R (2006) Peroxidase activity in soybeans following inoculation with Phytophthora sojae. Mycopathol 161:37–42

    Article  CAS  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    Article  PubMed  CAS  Google Scholar 

  • Müller KO, Black W (1952) Potato breeding for resistance to blight and virus diseases during the last hundred years. Zt. Pflanzenzucht 31:305–318

    Google Scholar 

  • Nelson MA, Kang S, Braun EL, Crawford ME, Dolan PL, Leonard PM, Mitchell J, Armijo AM, Bean L, Blueyes E, Cushing T, Errett A, Fleharty M, Gorman M, Judson K, Miller R, Ortega J, Pavlova I, Perea J, Todisco S, Trujillo R, Valentine J, Wells A, Werner-Washburne M, Yazzie S, Natvig D (1997) Expressed sequences from conidial, mycelial, and sexual stages of Neurospora crassa. Fungal Genet Biol 21:348–363

    Article  PubMed  CAS  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  PubMed  CAS  Google Scholar 

  • Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A, Legrand M, Fritig B, Mosinger E (1995) Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol 108:17–27

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Truesdale MR, Calvert CM, Dorans A, Roberts MR, Bowles DJ (1998) A novel tomato gene that rapidly responds to wound- and pathogen-related signals. Plant J 14:137–142

    Article  PubMed  Google Scholar 

  • Oh BJ, Ko MK, Kim YS, Kim KS, Kostenyuk I, Kee HK (1999) A Cytochrome P450 gene is differentially expressed in compatible and incompatible interactions between pepper (Capsicum annuum) and the anthracnose fungus, Colletotrichum gloeosporioides. Mol Plant Microbe Interact 12:1044–1052

    Article  PubMed  CAS  Google Scholar 

  • Park TH, Vleeshouwers VGAA, Hutten RCB, van Eck HJ, van der Vossen E, Jacobsen E, Visser RGF (2005) High-resolution mapping and analysis of the resistance locus Rpi-abpt against Phytophthora infestans in potato. Mol Breeding 16:33–43

    Article  CAS  Google Scholar 

  • Peters RD, Platt HW, Hall R, Medina M (1999) Variation in aggressiveness of Canadian isolates of Phytophthora infestans as indicated by their relative abilities to cause potato tuber rot. Plant Dis 83:652–661

    Article  Google Scholar 

  • Pignocchi C, Kiddle G, Hernandez I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol 141:423–435

    Article  PubMed  CAS  Google Scholar 

  • Ros B, Thummler F, Wenzel G (2005) Comparative analysis of Phytophthora infestans induced gene expression in potato cultivars with different levels of resistance. Plant Biol 7:686–693

    Article  PubMed  CAS  Google Scholar 

  • Ros B, Mohler V, Wenzel G, Thummler F (2008) Phytophthora infestans-triggered response of growth- and defense-related genes in potato cultivars with different levels of resistance under the influence of nitrogen availability. Physiol Plantarum 133:386–396

    Article  CAS  Google Scholar 

  • Ross H (1986) Potato breeding: problems and perspectives. Advances in plant breeding. Supplement 13 to J. Plant Breed. Verlag Paul Parey, Berlin and Hamburg

    Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Miniatis T (1989) Molecular cloning A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schröder M, Hahlbrock K, Kombrink E (1992) Temporal and spatial patterns of 1,3-β-glucanase and chitinase induction in potato leaves infected by Phytophthora infestans. Plant J 2:161–172

    Article  Google Scholar 

  • Smart CD, Fry WE (2001) Invasions by the late blight pathogen: renewed sex and enhanced fitness. Biol Invasions 3:235–243

    Article  Google Scholar 

  • Smilde WD, Brigneti G, Jagger L, Perkins S, Jones JD (2005) Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theor Appl Genet 110:252–258

    Article  PubMed  CAS  Google Scholar 

  • Stewart H, Gourlay F (1995) Recognising race-specific resistance to Phytophthora infestans. In: Dowley L, Bannon E, Cooke L, Keane T, O’Sullivan E (eds) Phytophthora infestans. Boole Press, Dublin, pp 255–260

    Google Scholar 

  • Świeżyński KM (1990) Resistance to Phytophthora infestans in potato cultivars and its relation to maturity. Genet Pol 31:99–106

    Google Scholar 

  • Swindell W, Huebner M, Weber A (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genom 8:125–140

    Article  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864–3876

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Furuse K, Doke N, Kawakita K (1997) Identification of chitinase and osmotin-like protein as actin-binding proteins in suspension-cultured potato cells. Plant Cell Physiol 38:441–448

    PubMed  CAS  Google Scholar 

  • Tian ZD, Liu J, Wang BL, Xie CH (2006) Screening and expression analysis of Phytophthora infestans induced genes in potato leaves with horizontal resistance. Plant Cell Rep 25:1094–1103

    Article  PubMed  CAS  Google Scholar 

  • Turkensteen LJ, Flier WG, Wanningen R, Mulder A (2000) Production, survival and infectivity of oospores of Phytophthora infestans. Plant Pathol 49:688–696

    Article  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Umaerus V, Umaerus M (1994) Inheritance of resistance to late blight. In: Bradshaw J, Mackay G (eds) Potato genetics. CAB International, Wallinford, pp 319–337

    Google Scholar 

  • van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJ (2008) A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146:1983–1995

    Article  PubMed  Google Scholar 

  • van’t Klooster JW, van den Berg-Velthuis G, van West P, Govers F (2000) tef1, a Phytophthora infestans gene encoding translation elongation factor 1 [alpha]. Gene 249:145–151

    Article  PubMed  Google Scholar 

  • Vignutelli A, Wasternack C, Apel K, Bohlmann H (1998) Systemic and local induction of an Arabidopsis thionin gene by wounding and pathogens. Plant J 14:285–295

    Article  PubMed  CAS  Google Scholar 

  • Vleeshouwers VG, van Dooijeweert W, Paul Keizer LC, Sijpkes L, Govers F, Colon LT (1999) A laboratory assay for Phytophthora infestans resistance in various Solanum species reflects the field stuation. Eur J Plant Pathol 105:241–250

    Article  Google Scholar 

  • Vleeshouwers VG, van Dooijeweert W, Govers F, Kamoun S, Colon LT (2000) The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta 210:853–864

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Liu J, Tian Z, Song B, Xie C (2005) Monitoring the expression patterns of potato genes associated with quantitative resistance to late blight during Phytophthora infestans infection using cDNA microarrays. Plant Sci 169:1155–1167

    Article  CAS  Google Scholar 

  • Wang X, Hadrami AE, Adam LR, Daayf F (2006) Local and distal gene expression of PR-1 and pr-5 in potato leaves inoculated with isolates from the old (US-1) and the new (US-8) genotypes of Phytophthora infestans (Mont.) de Bary. Environ Exp Bot 57:70–79

    Article  CAS  Google Scholar 

  • Wastie RL (1991) Breeding for resistance. In: Ingram DS, Williams PH (eds) Phytophthora infestans: the cause of late blight of potato. Academic Press, San Diego, pp 193–224

    Google Scholar 

  • Wrzaczek MM, Hirt H (2001) Plant MAP kinase pathways: how many and what for? Biol Cell 93:81–87

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004) Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta 1679:279–287

    PubMed  CAS  Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Nat Biotechnol 12:807–812

    Article  CAS  Google Scholar 

  • Zhu B, Chen THH, Li PH (1995) Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol 108:929–937

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Chen T, Li P (1996) Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for an osmotin-like protein. Planta 198:70–77

    Google Scholar 

Download references

Acknowledgments

This work was funded by Danish Agency for Science Technology and Innovation grant (No. 09-062975). The authors thank Kirsten Sørensen for technician assistance, Bent Nielsen and Finn Pedersen for assistance in the multiplication of potato cultivars and Dariusz Orlowski for preparation of the figures. Additional support was received from Coimbra Group and Wood-Whelan research fellowships (IUBMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Orłowska.

Additional information

Communicated by D. Zaitlin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orłowska, E., Fiil, A., Kirk, HG. et al. Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans . Plant Cell Rep 31, 187–203 (2012). https://doi.org/10.1007/s00299-011-1155-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1155-2

Keywords

Navigation