Skip to main content
Log in

Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Verticillium wilt causes enormous loss to yield or quality in many crops. In an effort to help controlling this disease through genetic engineering, we first cloned and characterized a Verticillium wilt resistance gene (GbVe) from cotton (Gossypium barbadense) and analyzed its function in Arabidopsis thaliana. Its nucleotide sequence is 3,819 bp long, with an open reading frame of 3,387 bp, and encoding an 1,128-aa protein precursor. Sequence analysis shows that GbVe produces a leucine-rich repeat receptor-like protein. It shares identities of 55.9% and 57.4% with tomato Ve1 and Ve2, respectively. Quantitative real-time PCR indicated that the Ve gene expression pattern was different between the resistant and susceptible cultivars. In the resistant Pima90–53, GbVe was quickly induced and reached to a peak at 2 h after inoculation, two-fold higher than that of control. We localized the GbVe–GFP fusion protein to the cytomembrane in onion epidermal cells. By inserting GbVe into Arabidopsis via Agrobacterium-mediated transformation, T3 transgenic lines were obtained. Compared with the wild-type control, GbVe-overexpressing plants had greater levels of resistance to V. dahliae. This suggests that GbVe is a useful gene for improving the plant resistance against fungal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RLP:

Receptor-like protein

LRR:

Leucine-rich repeat

PAMPs:

Pathogen-associated molecular patterns

EST:

Expressed sequence tag

GbVe :

Gossypium barbadense Verticillium wilt resistance gene

PDA:

Potato dextrose agar

Q-PCR:

Quantitative real-time PCR

DIG:

Digoxigenin

dpi:

Day(s) post-inoculation

References

  • Appel RD, Bairoch A, Hochstrasser DF (1994) A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci 19:258–260

    Article  PubMed  CAS  Google Scholar 

  • Bae J, Halterman DA, Jansky SH (2008) Development of a molecular marker associated with Verticillium wilt resistance in diploid interspecific potato hybrids. Mol Breed 22:61–69

    Article  CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    Article  PubMed  CAS  Google Scholar 

  • Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynon JL, Daniels MJ, Holub EB, Jones JDG (1998) Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct peronospora parasitica avirulence determinants. Plant Cell 10:1847–1860

    Article  PubMed  CAS  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Dunemann F (2009) Identification and molecular analysis of candidate genes homologous to HcrVf genes for scab resistance in apple. Plant breed 128:84–81

    Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  PubMed  CAS  Google Scholar 

  • Burch-Smith TM, Schiff M, Liu YL, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    Article  PubMed  CAS  Google Scholar 

  • Chen JY, Dai XF (2010) Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana. Planta 231:861–873

    Article  PubMed  CAS  Google Scholar 

  • Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact 6:511–520

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Corsini D, Pavek JJ (1996) Agronomic performance of potato germplasm selected for high resistance to Verticillium wilt. Am J Potato Res 73:249–260

    Article  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 5:295–299

    Article  PubMed  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Di CX, Li M, Long F, Bai MQ, Liu YJ, Zheng XL, Xu SJ, Xiang Y, Sun ZL, An LZ (2009) Molecular cloning, functional analysis and localization of a novel gene encoding polygalacturonase-inhibiting protein in Chorispora bungeana. Planta 231:169–178

    Article  PubMed  CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-lich lepeat proteins. Cell 84:451–459

    Article  PubMed  CAS  Google Scholar 

  • Eitas TK, Nimchuk ZL, Dangl JL (2008) Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc Natl Acad Sci USA 105:6475–6480

    Article  PubMed  CAS  Google Scholar 

  • Ellendorff U, Fradin EF, de Jonge R, Thomma BPHJ (2009) RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 60:591–602

    Article  PubMed  CAS  Google Scholar 

  • El-Zik KM, Thaxton PM (1989) Genetic improvement for resistance to pests and stresses in cotton. In: Frisbie RE, El-Zik KM, Wilson LT (eds) Integrated Pest Management System and Cotton Production. Wiley, New York, pp 191–224

    Google Scholar 

  • El-Zik KM, Thaxton PM (2001) Improving insect and disease resistance utilizing the multi adversity resistance (MAR) system. In: Jenkins JN, Saha S (eds) Genetic improvement of cotton: emerging technologies. Science Publishers, Inc., Enfield, NH, pp 17–41

    Google Scholar 

  • Fei J, Chai YR, Wang J, Lin J, Sun XF, Sun C, Zuo KJ, Tang KX (2004) cDNA Cloning and characterization of the Ve homologue gene StVe from Solanum torvum Swartz. Mitochondrial DNA 15:88–95

    CAS  Google Scholar 

  • Fradin EF, Thomma BPHJ (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  PubMed  CAS  Google Scholar 

  • Fradin EF, Zhang Z, Juarez Ayala JC, Castroverde CDM, Nazar RN, Robb J, Liu CM, Thomma BPHJ (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve. Plant Physiol 150:320–333

    Article  PubMed  CAS  Google Scholar 

  • Fritz-Laylin LK, Krishnamurthy N, Tör MT, Sjölander KV, Jones JDG (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol 138:611–623

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Shu XM, Ali MB, Howard S, Li N, Winterhagen P, Qiu WP, Gassmann W (2010) A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant. Planta 231:1037–1047

    Article  PubMed  CAS  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846

    Article  PubMed  CAS  Google Scholar 

  • Hepworth SR, Zhang YL, McKim S, Li X, Haughn GW (2005) Blade-on-petiole-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434–1448

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Nakai K (1997) Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc Int Conf Intell Syst Mol Biol 5:147–152

    PubMed  CAS  Google Scholar 

  • Huang B, Liu JY (2006) A cotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Biochem Biophys Res Commun 343:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Jian GL, Ma C, Zhang CL (2003) Advance in cotton breeding for resistance to Fusarium and Verticillium wilt in the last fifty years in China. Agric Sci China 2:280–288

    Google Scholar 

  • Jones JD (2001) Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 4:281–287

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  PubMed  CAS  Google Scholar 

  • Kawchuk L, Hachey J, Lynch DR, Klcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prüfer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 98:6511–6515

    Article  PubMed  CAS  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lynch DR, Kawchuck LM, Hachey J (1997) Identification of a gene conferring high levels of resistance to Verticillium wilt in Solanum chacoense. Plant Dis 81:1001–1014

    Article  Google Scholar 

  • Ma ZY, Wang XF, Zhang GY, Liu SQ, Liu JL, Sun JZ (2000) Genetic studies of Verticillium wilt resistance among different types of Sea Island cottons. Acta Agronomica Sinica 26:315–321

    Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Okie WR, Gardner RG (1982) Screening tomato seedlings for resistance to Verticillium dahliae races 1 and 2. Plant Dis 66:34–37

    Article  Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    PubMed  CAS  Google Scholar 

  • Peart JR, Mestrel P, Lu R, Malcuit I, Baulcombe DC (2005) NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15:968–973

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Kishore GM (2000) Exploiting the full potential of disease-resistance genes for agricultural use. Curr Opin Plant Biol 11:120–125

    CAS  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    Article  PubMed  CAS  Google Scholar 

  • Rowe RC, Davis JR, Powelson ML, Rouse DI (1987) Potato early dying: causal agents and management strategies. Plant Dis 71:482–489

    Article  Google Scholar 

  • Schaible L, Cannon OS, Waddoups V (1951) Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology 41:986–990

    Google Scholar 

  • Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechnology 26:1125–1132

    CAS  Google Scholar 

  • Shanmugam V (2005) Role of extracytoplasmic leucine rich repeat proteins in plant defence mechanisms. Microbiol Res 160:83–94

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  PubMed  CAS  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Intl Conf Intell Syst Mol Biol 6:175–182

    CAS  Google Scholar 

  • Tao Y, Yuan F, Leister RT, Ausubel FM, Katagiri F (2000) Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant Cell 12:1367–1377

    Article  Google Scholar 

  • Thomma BPHJ, van Esse HP, Crous PW, de Wit PJGM (2005) Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 6:379–393

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: Xexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Veronese P, Narasimhan ML, Stevenson RA, Zhu JK, Weller SC, Subbarao KV (2003) Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant J 35:574–587

    Article  PubMed  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    Article  PubMed  CAS  Google Scholar 

  • Wang XF, Ma J, Wang WS, Zheng YM, Zhang GY, Liu CJ, Ma ZY (2006) Construction and characterization of the first bacterial artificial chromosome library for the cotton species Gossypium barbadense L. Genome 49:1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Wang GD, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tör A, Zipfel C, Wit PJGM, Jones JDG, Tör M, Thomma BPHJ (2008) A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol 147:503–517

    Article  PubMed  CAS  Google Scholar 

  • Weaver ML, Swiderski MR, Li Y, Jones JDG (2006) The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant J 47:829–840

    Article  CAS  Google Scholar 

  • Yuan YX, Zhong SH, Li Q, Zhu ZR, Lou YG, Wang LY, Wang JJ, Wang MY, Li QL, Yang DM, He ZH (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotech J 5:313–324

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X, Cheng C, Gao QQ, Liu JY, Guo XQ (2008) Molecular cloning and characterization of GhNPR1, a gene implicated in pathogen responses from cotton (Gossypium hirsutum L.). Biosci Rep 28:7–14

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Natural Science Foundation of China (No. 30871562) and by Post Doctorate Research Foundation of Hebei Province. The authors are grateful to Priscilla Licht for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Ma.

Additional information

Communicated by K. Chong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, X., Yang, S. et al. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana . Plant Cell Rep 30, 2085–2096 (2011). https://doi.org/10.1007/s00299-011-1115-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1115-x

Keywords

Navigation