Skip to main content
Log in

Role of HD2 genes in seed germination and early seedling growth in Arabidopsis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The Arabidopsis HD2 family of histone deacetylases consist of 4 members (HD2A, HD2B, HD2C, HD2D) that play diverse roles in plant development and physiology through chromatin remodelling. Here, we show that the transcripts of HD2 family members selectively accumulate in response to glucose through a HXK1-independent signal transduction pathway during the early stages of seedling growth. Germination was enhanced in hd2a null mutants relative to wild-type seeds. In contrast, hd2c mutants were restrained in germination relative to wild-type seeds. In hd2a/hd2c double mutants, germination was restored to wild-type levels. The data suggests that HD2A and HD2C may have different and opposing functions in germination with the glucose/HD2A pathway acting to restrain germination and the HD2C pathway acting to enhance germination. These pathways may function early in the regulation of seedling germination, independently of the glucose/HXK1/ABA signal transduction pathway, to fine tune the onset of germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alhattab R (2009) Glucose signal transduction an the role of the HD2 family of histone deacetylases in Arabidopsis seedling germination and development. MSc thesis, Carleton University, Department of Biology, Ottawa, Canada

  • Alinsug MV, Yu C-W, Wu K (2009) Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biol 9:37

    Article  PubMed  Google Scholar 

  • Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L, Martínez-Zapater JM (2004) Regulation of flowering time by FVE, retinoblastoma-associated protein. Nat Genet 36:162–166

    Article  PubMed  CAS  Google Scholar 

  • Bossi F, Cordoba E, Dupré P, Mendosa MS, Románcs CS, León P (2009) The Arabidopsis ABA- insensitive (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J 59:359–374

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Ji F, Xie H, Liang J, Zhang J (2006) The regulator of G-protein signaling proteins involved in sugar and abscisic acid signalling in Arabidopsis seed germination. Plant Physiol 140:302–310

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Hafidh s, Poh SH, Twell D, Berger F (2009) Proliferation and cell fate establishment during Arabidopsis male gametogenesis depends on the Retinoblastoma protein. Proc Natl Acad Sci USA 106:7257–7262

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Cho Y-H, Yoo S-D, Sheen J (2006) Regulatory functions of nuclear hexokinase 1 complex in glucose signaling. Cell 127:579–589

    Article  PubMed  CAS  Google Scholar 

  • Cho Y-H, Yoo S-D, Sheen J (2007) Glucose signaling through nuclear hexokinase 1 complex in Arabidopsis. Plant Signal Behav 2(2):123–124

    Article  PubMed  Google Scholar 

  • Colville AH (2007) Sugar and HD2 expression: new insights into the HD2 plant-specific class of histone deacetylases, MSc thesis, Carleton University, Department of Biology, Ottawa, Canada

  • Dekkers BJW, Schuurmans JAMJ, Smeekens SCM (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218:579–588

    Article  PubMed  CAS  Google Scholar 

  • Dekkers BJW, Schuurmans JAMJ, Smeekens SCM (2008) Interaction between sugar and abscisic acid signaling during early seedling development in Arabidopsis. Plant Mol Biol 67:151–167

    Article  PubMed  CAS  Google Scholar 

  • Desvoyes B, Ramirez-Parra E, Xie Q, Chua N-H, Gutierrez C (2006) Cell type-specific role of the Retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol 140:67–80

    Article  PubMed  CAS  Google Scholar 

  • Dinneny JR, Benfey PN (2005) Stem cell research goes underground: the RETINOBLASTOMA-RELATED gene in root development. Cell 123:1180–1182

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Fong PM, Tian L, Chen ZJ (2006) Arabidopsis thaliana histone deacetylase 1 (AtHD1) is localized in euchromatic regions and demonstrates histone deacetylase activity in vitro. Cell Res 16:479–488

    Article  PubMed  CAS  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar sensing. Curr Opin Plant Biol 8:93–102

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C, Ramirez-Parra E, Castellano MM, del Pozo JC (2002) G1 to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol 5:480–486

    Article  PubMed  CAS  Google Scholar 

  • Herve C, Dabos P, Bardet C, Jauneau A, Auriac MC, Ramboer A, Lacout F, Tremousaygue D (2009) In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. Plant Physiol 149:1462–1477

    Article  PubMed  CAS  Google Scholar 

  • Hill K, Wang H, Perry SE (2008) A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components. Plant J 53:172–185

    Article  PubMed  CAS  Google Scholar 

  • Hirano H, Harashima H, Shinmyo A, Sekine M (2008) Arabidopsis RETINOBLASTOMA-RELATED PROTEIN 1 is involved in G1 phase cell cycle arrest caused by sucrose starvation. Plant Mol Biol 66:259–275

    Article  PubMed  CAS  Google Scholar 

  • Inzé D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105

    Article  PubMed  Google Scholar 

  • Johnson CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen J-G, Siderovski DP, Jones AM, Willard FS (2007) GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci USA 104:17317–17322

    Article  Google Scholar 

  • Julien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, Berger F (2008) Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. Plos Biol 6:1693–1705

    Article  Google Scholar 

  • Köhler C, Henning L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22:4804–4814

    Article  PubMed  Google Scholar 

  • Lawrence RJ, Earley K, Pontes O, Siva M, Chen ZJ, Neves N, Viegas W, Pikkard CS (2004) A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell 13:599–609

    Article  PubMed  CAS  Google Scholar 

  • Li C, Potuschak T, Colόn-Carmona A, Gutiérrez RA, Doerner P (2005) Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102:12978–12983

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW (2006) Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine. Genome Res 16:414–427

    Article  PubMed  CAS  Google Scholar 

  • Lusser A, Brosch G, Loidl A, Haas H, Loidl P (1997) Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science 277:88–91

    Article  PubMed  CAS  Google Scholar 

  • Manevski A, Bertoni G, Bardet C, Tremousaygue D, Lescure B (2000) In synergy with various cis-acting elements, plant interstitial telomere motifs regulate gene expression in Arabidopsis root meristems. FEBS Lett 483:43–46

    Article  PubMed  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H, Liu Y-X, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Nicolai M, Roncato MA, Canoy AS, Rouquie D, Sarda X, Freyssinet G, Robaglia C (2006) Large-scale analysis of mRNA translation states during sucrose starvation in Arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control. Plant Physiol 141:663–673

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844

    Article  PubMed  CAS  Google Scholar 

  • Pandey R, Müller A, Napoli CA, Selinger DA, Pikkard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30:5036–5055

    Article  PubMed  CAS  Google Scholar 

  • Perruc E, Kinoshita N, Lopez-Molina L (2007) The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination. Plant J 52:927–936

    Article  PubMed  CAS  Google Scholar 

  • Price J, Li T-C, Kang SG, Na JK, Jang J-C (2003) Mechanisms of glucose signaling during germinatin of Arabidopsis. Plant Physiol 132:1424–1438

    Article  PubMed  CAS  Google Scholar 

  • Price J, Laxmi A, St Martin SK, Jang J-C (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    Article  PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JMS, Murray JAH (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709

    Article  CAS  Google Scholar 

  • Rook R, Hadingham SA, Li Y, Bevan MW (2006) Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ 29:426–434

    Article  PubMed  CAS  Google Scholar 

  • Rossi V, Locatelli S, Lanzanova C, Boniotti MB, Varotto S, Pipal A, Goralik-Schramel M, Lusser A, Gatz C, Gutierrez C, Motto M (2003) A maize histone deacetylase and retinoblastoma-related protein physically interact and cooperate in repressing gene transcription. Plant Mol Biol 51:401–413

    Article  PubMed  CAS  Google Scholar 

  • Rossignol P, Stevens R, Perennes C, Jasinski S, Cella R, Tremousaygue D, Bergounioux C (2002) AtE2F-a and AtAP-a, members of the E2F family of transcription factors, induce Arabidopsis leaf cells to re-enter S phase. Mol Genet Genomics 266:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis histone deacetylases HD6 and HDA19 contribute to the repression of the embryonic properties after germination. Plant Physiol 146:149–161

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Chen ZJ (2001) Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc Natl Acad Sci USA 98:33–37

    Article  Google Scholar 

  • Tian L, Fong MP, Wang JJ, Wei NE, Jing H, Doerge RW (2005) Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development. Genetics 169:337–345

    Article  PubMed  CAS  Google Scholar 

  • Trémousaygue D, Manevski A, Bardet C, Lescure N, Lescure B (1999) Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J 20:553–561

    Article  PubMed  Google Scholar 

  • Trémousaygue D, Garnier L, Bardet C, Dabos P, Hervé C, Lescure B (2003) Internal telomeric repeats and ‘TCP’ domain protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells. Plant J 33:957–966

    Article  PubMed  Google Scholar 

  • Tsukagoshi H, Morikami A, Nakamura K (2007) Two B3 domain transcriptional repressors prevent sugar- inducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci USA 104:2543–2547

    Article  PubMed  CAS  Google Scholar 

  • Villadsen D, Smith SM (2004) Identification of more than 200 glucose-responsive Arabidopsis genes none of which responds to 3-o-methylglucose or 6-deoxyglucose. Plant Mol Biol 55:467–477

    Article  PubMed  CAS  Google Scholar 

  • Welchen E, Gonzalez DH (2006) Overrepresentation of elements recognized by TCP-domain transcription factors in the upstream regions of nuclear genes encoding components of the mitochondrial oxidative phosphorylation machinery. Plant Physiol 141:540–545

    Article  PubMed  CAS  Google Scholar 

  • Wildwater M, Campilho A, Perez–Perez JM, Heidstra R, Blilou I, Korthout H, Chatterjee J, Mariconti L, Gruissem W, Scheres B (2005) The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Tian L, Malik K, Brown D, Miki B (2000) Functional analysis of HD2 histone deacetylase homologs in Arabidopsis thaliana. Plant J 20:19–28

    Article  Google Scholar 

  • Xiao W, Sheen J, Jang J-C (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461

    Article  PubMed  CAS  Google Scholar 

  • Yuan K, Wysocka-Diller J (2006) Phytohormone signaling pathways interact with sugars during seed germination and seedling development. J Exp Bot 57:3359–3367

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Labbe H, Sridha S, Wang L, Tian L, Latoszek-Green M, Yang Z, Brown D, Miki B, Wu K (2004) Expression and function of HD2-type histone deacetylases in Arabidopsis development. Plant J 38:715–724

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) Histone deacetylase19 HDA19 is involved in jasmonic acid and ethylene signaling of pathogen-response in Arabidopsis. Plant Cell 17:1196–1204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by an NSERC Discovery Grant to BM and by Agriculture and Agri-Food Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Miki.

Additional information

Communicated by M. Jordan.

A. Colville and R. Alhattab have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colville, A., Alhattab, R., Hu, M. et al. Role of HD2 genes in seed germination and early seedling growth in Arabidopsis . Plant Cell Rep 30, 1969–1979 (2011). https://doi.org/10.1007/s00299-011-1105-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1105-z

Keywords

Navigation