Skip to main content

Advertisement

Log in

Cloning and characterization of PR5 gene from Curcuma amada and Zingiber officinale in response to Ralstonia solanacearum infection

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Ginger (Zingiber officinale Roscoe), is an important spice crop that is badly affected by Ralstonia solanacearum wilt. Ginger does not set seed and sexual recombination has never been reported. In spite of extensive search in its habitats, no resistance source to Ralstonia induced bacterial wilt, could be located in ginger. Curcuma amada Roxb. is a potential donor for bacterial wilt resistance to Z. officinale, if the exact mechanism of resistance is understood. Pathogenesis-related (PR)-5 proteins are a family of proteins that are induced by different phytopathogens in many plants and share significant sequence similarity with thaumatin. Two putative PR5 genes, CaPR5 and ZoPR5, were amplified from C. amada and ginger, which encode precursor proteins of 227 and 224 amino acid residues, respectively, and share high homology with a number of other PR5 genes. The secondary and three-dimensional structure comparison did not reveal any striking differences between these two proteins. The expression of Ca and ZoPR5s under R. solanacearum inoculation was analyzed at different time points using quantitative real-time PCR (qRT-PCR). Our results reveal that CaPR5 is readily induced by the bacterium in C. amada, while ZoPR5 induction was very weak and slow in ginger. These results suggest that the CaPR5 could play a role in the molecular defense response of C. amada to pathogen attack. This is the first report of the isolation of PR5 gene from the C. amada and Z. officinale. Promoter analysis indicates the presence of a silencing element binding factor in ZoPR5-promoter, but not in CaPR5. Prospective promoter elements, such as GT-1 box and TGTCA, implicated as being positive regulatory elements for expression of PR proteins, occur in the 5′-flanking sequences of the CaPR5. Transient GUS expression study confirms its action with a weaker GUS expression in ginger, indicating that the PR5 expression may be controlled in the promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Breusegem FV, Hofte M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijine G, Brunak S (2004) Improved prediction of signal peptides: SingalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera cv. Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066

    PubMed  CAS  Google Scholar 

  • Boyle B, Brisson N (2001) Repression of the defense gene PR-10a by the single-stranded DNA binding protein SEBF. Plant Cell 13:2525–2537

    Article  PubMed  CAS  Google Scholar 

  • Breiteneder H (2004) Thaumatin-like proteins-a new family of pollen and fruit allergens. Allergy 59:479–481

    Article  PubMed  Google Scholar 

  • Campos MA, Ribeiro SG, Rigden DJ, Monte DC, Grossidesa MF (2002) Putative pathogenesis-related genes within Solanum nigrum L. var. americanum genome: isolation of two genes coding for PR5-like proteins, phylogenetic and sequence analysis. Physiol Mol Plant Pathol 61:205–216

    Article  CAS  Google Scholar 

  • Chen S, Li X, Cai Q, Hu N, He H, Yao YD, Mitola J (2010) Classification and control of cognitive radios using Hierarchical Neural Network. Adv Neural Netw Res Appl 67(4):347–353

    Google Scholar 

  • Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145

    Article  CAS  Google Scholar 

  • Després C, Subramaniam R, Matton DP, Brisson N (1995) The activation of the potato PR-10a gene requires the phosphorylation of the nuclear factor PBF-1. Plant Cell 7:589–598

    Article  PubMed  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  PubMed  CAS  Google Scholar 

  • Evans IJ, Greenland A (1998) Trangenic approaches to disease protection: Applications of antifungal proteins. Pestic Sci 54:353–359

    Article  CAS  Google Scholar 

  • FAOSTAT (2010) Food and Agricultural commodities production. http://faostat.fao.org/site/339/default.aspx. Accessed 31 Aug 2010

  • Fierens E, Gebruers K, Voet AR, De Maeyer M, Courtin CM, Delcour JA (2009) Biochemical and structural characterization of TLXI, the Triticum aestivum L. thaumatin-like xylanase inhibitor. J Enzyme Inhib Med Chem 24:646–654

    Article  PubMed  CAS  Google Scholar 

  • Garnier J, Gibrat JF, Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540–553

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Ge X, Li GJ, Wang SB, ZhuH ZhuT, Wang X, Xia Y (2007) AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis. Plant Physiol 145:204–215

    Article  PubMed  CAS  Google Scholar 

  • Ghosh R, Chakrabarti C (2008) Crystal structure analysis of NP24-I: a thaumatin-like protein. Planta 228:883–890

    Article  PubMed  CAS  Google Scholar 

  • Grenier J, Potvin C, Trudel J, Asselin A (1999) Some thaumatin-like proteins hydrolyse polymeric β-1, 3-glucans. Plant J 19:473–480

    Article  PubMed  CAS  Google Scholar 

  • Hooft RWW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Google Scholar 

  • Jayasankar S, Li Z, Gray DJ (2003) Constitutive expression of Vitis vinifera thaumatin like protein after in vitro selection and its role in anthracnose resistance. Funct Plant Biol 30:1105–1115

    Article  CAS  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  PubMed  CAS  Google Scholar 

  • Kavitha PG, Thomas G (2008) Population genetic structure of the clonal plant Zingiber zerumbet (L.) Smith (Zingiberaceae), a wild relative of cultivated ginger, and its response to Pythium aphanidermatum. Euphytica 160:89–100

    Article  Google Scholar 

  • Kelman A (1954) The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695

    Google Scholar 

  • Kim H, Mun JH, Byun BH, Hwang HJ, Kwon YM, Kim SG (2002) Molecular cloning and characterization of the gene encoding osmotin protein in Petunia hybrid. Plant Sci 162:745–752

    Article  CAS  Google Scholar 

  • Kim YJ, Lee JH, Jung DY, Gayathri S, Shim JS, In JG, Yang DC (2009) Isolation and characterization of pathogenesis-related protein 5 (PgPR5) gene from Panax ginseng. Plant Pathol J 25(4):400–407

    Article  CAS  Google Scholar 

  • Koiwa H, Kato H, Nakatsu T, Oda J, Yamada Y, Sato F (1999) Crystal structure of tobacco PR-5d protein at 1.8Å resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like proteins. J Mol Biol 286:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Hayward AC (2005) Bacterial diseases of ginger and their control. In: Ravindran PN, Babu KN (eds) Monograph on ginger. CRC Press, Boca Raton, pp 341–366

    Google Scholar 

  • Kumar A, Sarma YR (2004) Characterization of Ralstonia solanacearum causing bacterial wilt of ginger in India. Indian Phytopathol 57:12–17

    Google Scholar 

  • Kumar A, Bhai RS, Sasikumar B, Anandaraj M, Parthasarathy VA (2006) Curcuma amada Roxb. a bacterial wilt evading species in Zingiberaceae—A potential source of valuable genes for bacterial wilt resistance. In: The 4th International Bacterial wilt symposium, 17–20th July 2006. The Lakeside Conference Centre, Central Science Laboratory, York, UK

  • Latijnhouwers M, de Wit PJGM, Govers F (2003) Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol 11:462–469

    Article  PubMed  CAS  Google Scholar 

  • Leone P, Menu-Bouaouiche L, Peumans WJ, Payan F, Barre A, Roussel A, Van Damme EJM, Rouge P (2006) Resolution of the structure of the allergenic and antifungal banana fruit thaumatin-like protein at 1.7-A. J Biochimie 88:45–52

    Article  CAS  Google Scholar 

  • Lescot M et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Zamani A, Ekramoddoullah AKM (2010) Expression profiling of a complex thaumatin-like protein family in western white pine. Planta 231:637–651

    Article  PubMed  CAS  Google Scholar 

  • Luo HL, Song FM, Goodman RM, Zheng Z (2005) Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol 7:459–468

    Article  PubMed  CAS  Google Scholar 

  • Matton DP, Prescott G, Bertrand C, Camirand A, Brisson N (1993) Identification of cis-acting elements involved in the regulation of the pathogenesis-related gene STH-2 in potato. Plant Mol Biol 22:279–291

    Article  PubMed  CAS  Google Scholar 

  • Min K, Ha SC, Hasegawa PM, Bressan RA, Yun D-J, Kim KK (2004) Crystal structure of osmotin, a plant antifungal protein. Proteins Struct Funct Bioinform 54:170–173

    Article  CAS  Google Scholar 

  • Muthukrishnan S, Liang GH, Trick HN, Gill BS (2001) Pathogenesis-related proteins and their genes in cereals. Plant Cell Tissue Organ Cult 64:93–114

    Article  CAS  Google Scholar 

  • Nair RA, Kiran AG, Sivakumar KC, Thomas G (2010) Molecular characterization of an oomycete-responsive PR-5 protein gene from Zingiber zerumbet. Plant Mol Biol Rep 28:128–135

    Article  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation, EMBnet News 4:14

  • Osmond RI, Hrmova M, Fontaine F, Imberty A, Fincher GB (2001) Binding interactions between barley thaumatin-like proteins and (1,3)-β-d-glucans. Kinetics, specificity, structural analysis and biological implications. Eur J Biochem 268:4190–4199

    Article  PubMed  CAS  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaClinduced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  PubMed  CAS  Google Scholar 

  • Pasquali G, Ouwerkerk PB, Memelink J (1994) Versatile transformation vectors to assay the promoter activity of DNA elements in plants. Gene 149:373–374

    Article  PubMed  CAS  Google Scholar 

  • Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP (2000) Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant Microbe Interact 13:159–169

    Article  PubMed  CAS  Google Scholar 

  • Pujade-Renaud V, Sanier C, Cambillau L, Pappusamy A et al (2005) Molecular characterization of new members of the Hevea brasiliensis hevein multigene family and analysis of their promoter region in rice. Biochim Biophys Acta 1727:151–161

    PubMed  CAS  Google Scholar 

  • Ravindran PN, Sasikumar B, Johnson KG, Ratnambal MJ, Babu KN, Zachariah JT, Nair RR (1994) Genetic resources of ginger (Zingiber officinale Rosc.) and its conservation in India. Plant Genet Resour Newsl 98:1–4

    Google Scholar 

  • Ravindran PN, Babu KN, Shiva KN (2005) Botany and crop improvement of ginger. In: Ravindran PN, Babu KN (eds) Monograph on ginger. CRC Press, Boca Raton, pp 15–85

    Google Scholar 

  • Ren X, Kong Q, Wang P, Jiang F, Wang H, Yu T, Zheng X (2010) Molecular cloning of a PR-5 like protein gene from cherry tomato and analysis of the response of this gene to abiotic stresses. Mol Biol Rep. doi:10.1007/s11033-010-0169-0

  • Sato F, Koiwa H, Saki Y, Kato N, Yamada Y (1995) Synthesis and secretion of tobacco neutral PR-5 protein by transgenic tobacco and yeast. Biochem Biophys Res Commun 211:909–913

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 3:3381–3385

    Article  Google Scholar 

  • Smole U, Bublin M, Radauer C, Ebner C, Breiteneder H (2008) Mal d2, the thaumatin-like allergen from apple, is highly resistant to gastrointestinal digestion and thermal processing. Int Arch Allergy Immunol 147:289–298

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Kauffmann WMS, Geoffroy P, Legrand B, Fritig B (1993) Plant “Pathogenesisrelated” proteins and their role in defense against pathogens. Biochimie 75:687–706

    Google Scholar 

  • Tachi H, Fukuda-Yamada K, Kojima T, Shiraiwa M, Rakahara H (2009) Molecular characterization of a novel soybean gene encoding a neutral PR-5 protein induced by high salt stress. Plant Physiol Biochem 47:73–79

    Article  PubMed  CAS  Google Scholar 

  • Trudel J, Grenier J, Potvin C, Asselin A (1998) Several thaumatin-like proteins bind to β-1,3-glucans. Plant Physiol 118:1431–1438

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Wei-Min L, Zhi-Xing W, Xin-Wu P, Shi-Rong J (2005) Cloning and characterization of the light-inducible Gacab promoter from Gossypium arboreum. Agric Biotechnol 2:17–22

    Article  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

DP gratefully acknowledges the Department of Science and Technology, (DST), Government of India for awarding prestigious BOYSCAST fellowship and the Indian Council of Agricultural Research (ICAR), Government of India for the permission to undertake this research work. Funding from CFI and OIT to SJ are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jayasankar.

Additional information

Communicated by P. Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

299_2011_1087_MOESM2_ESM.doc

Supplementary Fig. S1 Comparison of CaPR5 and ZoPR5 nucleotide sequences using the ClustalW program. Conserved residues are shaded in black. The position of the nucleotide Indels in CaPR5 is indicated. (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasath, D., El-Sharkawy, I., Sherif, S. et al. Cloning and characterization of PR5 gene from Curcuma amada and Zingiber officinale in response to Ralstonia solanacearum infection. Plant Cell Rep 30, 1799–1809 (2011). https://doi.org/10.1007/s00299-011-1087-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1087-x

Keywords

Navigation