Skip to main content

Arabidopsis MAP kinase phosphatase 1 is phosphorylated and activated by its substrate AtMPK6

Abstract

Arabidopsis MAP kinase phosphatase 1 (AtMKP1) is a member of the mitogen-activated protein kinase (MPK) phosphatase family, which negatively regulates AtMPKs. We have previously shown that AtMKP1 is regulated by calmodulin (CaM). Here, we examined the phosphorylation of AtMKP1 by its substrate AtMPK6. Intriguingly, AtMKP1 was phosphorylated by AtMPK6, one of AtMKP1 substrates. Four phosphorylation sites were identified by phosphoamino acid analysis, TiO2 chromatography and mass spectrometric analysis. Site-directed mutation of these residues in AtMKP1 abolished the phosphorylation by AtMPK6. In addition, AtMKP1 interacted with AtMPK6 as demonstrated by the yeast two-hybrid system. Finally, the phosphatase activity of AtMKP1 increased approximately twofold following phosphorylation by AtMPK6. By in-gel kinase assays, we showed that AtMKP1 could be rapidly phosphorylated by AtMPK6 in plants. Our results suggest that the catalytic activity of AtMKP1 in plants can be regulated not only by Ca2+/CaM, but also by its physiological substrate, AtMPK6.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andreasson E, Ellis B (2009) Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci 15:106–113

    Article  Google Scholar 

  2. Bartels S, Anderson JC, González Besteiro MA, Carreri A, Hirt H, Buchala A, Métraux J-P, Peck SC, Ulm R (2009) MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant cell 21:2884–2897

    PubMed  Article  CAS  Google Scholar 

  3. Bartels S, González Besteiro MA, Lang D, Ulm R (2010) Emerging functions for plant MAP kinase phosphatases. Trends Plant Sci 15:322–329

    PubMed  Article  CAS  Google Scholar 

  4. Brondello JM, Pouysségur J, McKenzie FR (1999) Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286:2514–2517

    PubMed  Article  CAS  Google Scholar 

  5. Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boschert U, Arkinstall S (1998) Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280:1262–1265

    PubMed  Article  CAS  Google Scholar 

  6. Chen L, Montserat J, Lawrence DS, Zhang ZY (1996) VHR and PTP1 protein phosphatases exhibit remarkably different active site specificities toward low molecular weight nonpeptidic substrates. Biochemistry 35:9349–9354

    PubMed  Article  CAS  Google Scholar 

  7. Chen P, Hutter D, Yang X, Gorospe M, Davis RJ, Liu Y (2001) Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MAP kinase phosphatase-2 and their ability to activate the phosphatase catalytically. J Biol Chem 276:29440–29449

    PubMed  Article  CAS  Google Scholar 

  8. Cohen P (1997) The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol 7:353–361

    PubMed  Article  CAS  Google Scholar 

  9. Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes. Biochem J 413:217–226

    PubMed  Article  CAS  Google Scholar 

  10. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    PubMed  Article  CAS  Google Scholar 

  11. Droillard M, Boudsocq M, Barbier-Brygoo H, Laurière C (2002) Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett 527:43–50

    PubMed  Article  CAS  Google Scholar 

  12. Ebisuya M, Kondoh K, Nishida E (2005) The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 118:2997–3002

    PubMed  Article  CAS  Google Scholar 

  13. Fauman EB, Saper MA (1996) Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 21:413–417

    PubMed  Article  CAS  Google Scholar 

  14. Gómez AR, López-Varea A, Molnar C, de la Calle-Mustienes E, Ruiz-Gómez M, Gómez-Skarmeta JL, de Celis JF (2005) Conserved cross-interactions in Drosophila and Xenopus between Ras/MAPK signaling and the dual-specificity phosphatase MKP3. Dev Dyn 232:695–708

    PubMed  Article  Google Scholar 

  15. Gottlin EB, Xu X, Epstein DM, Burke SP, Eckstein JW, Ballou DP, Dixon JE (1996) Kinetic analysis of the catalytic domain of human cdc25B. J Biol Chem 271:27445–27449

    PubMed  Article  CAS  Google Scholar 

  16. Ichimura K et al (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  CAS  Google Scholar 

  17. Katou S, Katrita E, Yamakawa H, Seo S (2005) Catalytic activation of the plant MAPK phosphatase NtMKP1 by its physiological substrate salicylic acid-induced protein kinase but not by calmodulins. J Biol Chem 280:39569–39581

    PubMed  Article  CAS  Google Scholar 

  18. Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S, Gribskov M (2002) The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol 129:908–925

    PubMed  Article  CAS  Google Scholar 

  19. Keyse SM (2008) The regulation of stress-activated MAP kinase signaling by protein phosphatases. Topics Curr Genet 20:33–49

    Article  CAS  Google Scholar 

  20. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  21. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    PubMed  Article  CAS  Google Scholar 

  22. Lee K, Song EH, Kim HS, Yoo JH, Han HJ, Jung MS, Lee SM, Kim KE, Kim MC, Cho MJ, Chung WS (2008) Regulation of MAP kinase phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. J Biol Chem 283:23581–23588

    PubMed  Article  CAS  Google Scholar 

  23. Li C, Scott DA, Hatch E, Tian X, Mansour SL (2007) Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134:167–176

    PubMed  Article  CAS  Google Scholar 

  24. Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    PubMed  Article  CAS  Google Scholar 

  25. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    PubMed  Article  CAS  Google Scholar 

  26. Martin-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, Martinez-Arias A (1998) puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev 12:557–570

    PubMed  Article  CAS  Google Scholar 

  27. McClean MN, Mody A, Broach JR, Ramanathan S (2007) Cross-talk and decision making in MAP kinase pathways. Nat Genet 39:409–414

    PubMed  Article  CAS  Google Scholar 

  28. Meskiene I, Baudouin E, Schweighofer A, Liwosz A, Jonak C, Rodriguez PL, Jelinek H, Hirt H (2003) Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J Biol Chem 278:18945–18952

    PubMed  Article  CAS  Google Scholar 

  29. Slack DN, Seternes OM, Gabrielsen M, Keyse SM (2001) Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J Biol Chem 276:16491–16500

    PubMed  Article  CAS  Google Scholar 

  30. Stewart AE, Dowd S, Keyse SM, McDonald NQ (1999) Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation. Nat Struct Biol 6:174–181

    PubMed  Article  CAS  Google Scholar 

  31. Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    PubMed  Article  CAS  Google Scholar 

  32. Thingholm TE, Jørgensen TJ, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1:1929–1935

    PubMed  Article  CAS  Google Scholar 

  33. Trewavas AJ, Malhó R (1997) Signal perception and transduction: the origin of the phenotype. Plant Cell 9:1181–1195

    PubMed  Article  CAS  Google Scholar 

  34. Ulm R, Revenkova E, di Sansebastiano GP, Bechtold N, Paszkowski J (2001) Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev 15:699–709

    PubMed  Article  CAS  Google Scholar 

  35. Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J (2002) Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J 21:6483–6493

    PubMed  Article  CAS  Google Scholar 

  36. Widmann C, Gibson S, Jarpe MB, Johson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  37. Xu SM, Wang XC, Chen J (2007) Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep 26:497–506

    PubMed  Article  CAS  Google Scholar 

  38. Yuvaniyama J, Denu JM, Dixon JE, Saper MA (1996) Crystal structure of the dual specificity protein phosphatase VHR. Science 272:1328–1331

    PubMed  Article  CAS  Google Scholar 

  39. Zhan XL, Deschenes RJ, Guan KL (1997) Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev 11:1690–1702

    PubMed  Article  CAS  Google Scholar 

  40. Zhang S, Jin CD, Roux SJ (1993) Casein kinase II-type protein kinase from pea cytoplasm and its inactivation by alkaline phosphatase in vitro. Plant Physiol 103:955–962

    PubMed  Article  CAS  Google Scholar 

  41. Zhou B, Zhang ZY (1999) Mechanism of mitogen-activated protein kinase phosphatase-3 activation by ERK2. J Biol Chem 274:35526–35534

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hans J. Bohnert for critical reading and insightful comments. This work was supported by grants from World Class University program (R32-10148) and Basic Science Research Program (2010-0010607) of National Research Foundation (NRF) funded by MOEST, Korea. KEK was supported by scholarships from the BK21 program of the Ministry of Education, Science and Technology, Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Woo Sik Chung.

Additional information

H. C. Park, E. H. Song, and X. C. Nguyen contributed equally to this work.

Communicated by J. R. Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, H.C., Song, E.H., Nguyen, X.C. et al. Arabidopsis MAP kinase phosphatase 1 is phosphorylated and activated by its substrate AtMPK6. Plant Cell Rep 30, 1523–1531 (2011). https://doi.org/10.1007/s00299-011-1064-4

Download citation

Keywords

  • Arabidopsis
  • Calmodulin
  • Mitogen-activated protein kinase (MPK)
  • Mitogen-activated protein kinase phosphatase (MKP)
  • Phosphorylation