Skip to main content
Log in

Revisiting the DNA C-values of the genome size-standards used in plant flow cytometry to choose the “best primary standards”

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Flow cytometry (FCM) techniques have enabled characterization of the genome size for various plant species. In order to measure the nuclear genome size of a species, reference standards with well-established DNA content are necessary. However, different 2C-values have been described for the same species used as reference standard. This fact has brought about inaccurate genome measurements, making relevant the establishment of optimal DNA reference standards for plant cytometric analyses. Our work revisited the genome size of Arabidopsis thaliana and other seven plant standards, which were denominated “Doležel’s standard set” and have been widely used in plant DNA measurements. These eight plant standards were reassessed for a comparative measurement of their DNA content values, using each plant species as primary standard in a cascade-like manner, from A. thaliana to Allium cepa. The genome size values obtained here were compared to those reported in the literature by statistical analyses. As a result, Raphanus sativus and Drosophila melanogaster were considered the most inadequate primary standards, whereas A. thaliana, Solanum lycopersicum and Pisum sativum were found to be the most suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abreu IS, Carvalho CR, Clarindo WR (2008) Chromosomal DNA content of sweet pepper determined by association of cytogenetic and cytometric tools. Plant Cell Rep 27:1227–1233. doi:10.1007/s00299-008-0539-4

    Article  PubMed  CAS  Google Scholar 

  • Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195. doi:10.1126/science.287.5461.2185

    Article  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant genome size research: a field in focus. Ann Bot 95:1–6. doi:10.1093/aob/mci001

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos T Roy Soc B 274:228–274

    Article  Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparison with Caenorhabditis (100 Mb) and Drosophila (175 Mb) using flow cytometry show genome size in Arabdopsis to be 157 Mb and thus 25% larger than the Arabdopsis Genome Initiative estimate of 125 Mb. Ann Bot 91:547–557. doi:10.1093/aob/mcg057

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Price HJ, Johnston S (2007) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101:777–790. doi:10.1093/aob/mcm303

    Article  PubMed  Google Scholar 

  • Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617. doi:10.1016/j.plantsci.2008.03.010

    Article  CAS  Google Scholar 

  • Clarindo WR, CR Carvalho (2010) Flow cytometric analysis using SYBR Green I for genome size estimation in coffee. Acta Histochem. doi:10.1016/j.acthis.2009.10.005

  • Cros J, Gavalda MC, Chabrillange N, Recalt C, Duperray C, Hamon S (1994) Variations in the total nuclear DNA content in African Coffea species (Rubiaceae). Café Cacao Thé 38:3–10

    CAS  Google Scholar 

  • Cruz CD (1997) Programa GENES—Aplicativo Computacional em Genética e Estatística. Editora UFV, Viçosa

    Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110. doi:10.1093/aob/mci005

    Article  PubMed  Google Scholar 

  • Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106

    Article  PubMed  Google Scholar 

  • Doležel J, Greilhuber J (2010) Nuclear genome size: are we getting closer? Cytometry Part A 77:635–642. doi:10.1002/cyto.a.20915

    Article  Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plantarum 85:625–631. doi:10.1111/j.1399-3054.1992.tb04764.x

    Article  Google Scholar 

  • Doležel J, Doleželová M, Novak FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M balbisiana). Biol Plantarum 36:351–357. doi:10.1007/BF02920930

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S et al (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plant cells. Wiley, Weinheim

    Book  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres JM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissue. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Ebert I (1994) Genome size variation in Pisum sativum. Genome 37:646–655

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Temsch E, Loureiro J (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley, Weinheim, pp 67–101

    Chapter  Google Scholar 

  • Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86:609–613

    Article  PubMed  CAS  Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876

    Article  Google Scholar 

  • Lopes DM, Carvalho CR, Clarindo WR, Praça MM, Tavares MG (2009) Genome size estimation of three stingless bee species (Hymenoptera, Meliponinae) by flow cytometry. Apidologie 40:517–523. doi:10.1051/apido/2009030

    Article  CAS  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98:679–689. doi:10.1093/aob/mcl141

    Article  PubMed  CAS  Google Scholar 

  • Loureiro J, Suda J, Doležel J, Santos C (2007) Flower: a plant dna flow cytometry database. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley, Weinheim, pp 67–101

    Google Scholar 

  • Marhold K, Kudoh H, Pak JH, Watanabe K, Spaniel S, Lihova J (2010) Cytotype diversity and genome size variation in eastern Asian polyploidy Cardamine (Brassicaceae) species. Ann Bot 105:249–264. doi:10.1093/aob/mcp282

    Article  PubMed  CAS  Google Scholar 

  • Meister A (2005) Calculation of binding length of base-specific DNA dyes by comparison of sequence and flow cytometric data. Application to Oryza sativa and Arabidopsis thaliana. J Theor Biol 232:93–97. doi:10.1016/j.jtbi.2004.07.022

    Article  PubMed  CAS  Google Scholar 

  • Noirot M, Barre P, Duperray C, Hamon S, Kochko A (2005) Investigation on the causes of stoichiometric error in genome size estimation using heat experiments: consequences on data interpretation. Ann Bot 95:111–118. doi:10.1093/aob/mci006

    Article  PubMed  CAS  Google Scholar 

  • Obermayer R, Leitch IJ, Hanson L, Bennett M (2002) Nuclear DNA C-values in 30 species double the familial representation in Pteridophytes. Ann Bot 90:209–217. doi:10.1093/aob/mcf167

    Article  PubMed  CAS  Google Scholar 

  • Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry Part A 73A:581–598

    Article  CAS  Google Scholar 

  • Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Darzynkiewicks Z, Crissman HA (eds) Methods in cell biology, vol 33. Academic, San Diego, pp 105–110

    Google Scholar 

  • Praça MM, Carvalho CR, Clarindo WR (2009) A practical and reliable procedure for in vitro induction of tetraploid tomato. Sci Hortic 122:501–505

    Article  Google Scholar 

  • Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934. doi:10.1006/anbo.2000.1255

    Article  CAS  Google Scholar 

  • Rasch EM, Barr HJ, Rash RW (1971) The DNA content of sperm of Drosophila melanogaster. Chromosoma 33:1–18

    Article  PubMed  CAS  Google Scholar 

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 42:92–103. doi:10.1016/j.ympev.2006.06.016

    Article  PubMed  Google Scholar 

  • Shapiro HM (2003) Practical flow cytometry. Wiley, New York

    Book  Google Scholar 

  • Spooner DM, Van Den Berg RG, Rivera-Peña A, Velguth P, Del Rio A, Salas-Lópes A (2001) Taxonomy of Mexican and Central American members of Solanum Series Conicibaccata (sect. Petota). Syst Bot 26:743–756

    Google Scholar 

  • Tavares MG, Carvalho CR, Soares FAF (2010) Genome size variation in Melipona species (Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 41:636–642. doi:10.1051/apido/20010023

    Article  CAS  Google Scholar 

  • Vilhar B, Greilhuber J, Koce JD, Temsch EM, Dermastia M (2001) Plant genome size measurement with DNA image cytometry. Ann Bot 87:719–728. doi:10.1006/anbo.2001.1394

    Article  CAS  Google Scholar 

  • Vižintin L, Javornik B, Bohanec B (2006) Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Sci 170:859–866. doi:10.1016/j.plantsci.2005.12.007

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jaroslav Doležel for generously providing the plant standards used in this study. We also thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for providing financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Roberto Carvalho.

Additional information

Communicated by J. Register.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praça-Fontes, M.M., Carvalho, C.R., Clarindo, W.R. et al. Revisiting the DNA C-values of the genome size-standards used in plant flow cytometry to choose the “best primary standards”. Plant Cell Rep 30, 1183–1191 (2011). https://doi.org/10.1007/s00299-011-1026-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1026-x

Keywords

Navigation