Skip to main content
Log in

Overexpression of the Arabidopsis α-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Guard cell walls of stomata are highly specialized in plants. Previous research focused on the structure and anatomy of guard cell walls, but little is known about guard cell regulation during stomata movement. In this work, we investigate the possible biological role of the Arabidopsis expansin gene AtEXPA1 in stomatal opening. The AtEXPA1 promoter drove the expression of the GUS reporter gene specifically in guard cells. Light-induced stomatal opening was accelerated in 35S::AtEXPA1 lines, whereas the anti-AtEXPA1 antibody decelerated light-induced stomatal opening. The inhibition of the anti-AtEXPA1 antibody on stomatal opening was largely dependent on the environmental pH. The volumetric elastic modulus (ε) was measured as an indicator of changes in the cell wall. The ε value of guard cells in 35S::AtEXPA1 lines was smaller than in the wild types. The putative role of AtEXPA1 as controller of stomatal opening rate and its regulation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9:345–375

    Article  CAS  PubMed  Google Scholar 

  • Bittisnich DJ, Entwisle LO, Neales TF (1987) Acid-induced stomatal opening in Vicia faba L. and the role of guard cell wall elasticity. Plant Physiol 85:554–557

    Article  CAS  PubMed  Google Scholar 

  • Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    Article  CAS  PubMed  Google Scholar 

  • Carey RE, Cosgrove DJ (2007) Portrait of the expansin superfamily in physcomitrella patens: comparisons with angiosperm expansins. Ann Bot 99(6):1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Catherine PD, Andrew MF, Simon JM-M (2001) The molecular basis of plant cell wall extension. Plant Mol Biol V47:179–195

    Google Scholar 

  • Charrier B, Champion A, Henry Y, Kreis M (2002) Expression profiling of the whole arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol 130:577–590

    Article  CAS  PubMed  Google Scholar 

  • Cho H-T, Cosgrove DJ (2000) From the cover: altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. PNAS 97:9783–9788

    Article  CAS  PubMed  Google Scholar 

  • Cho H-T, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  CAS  PubMed  Google Scholar 

  • Cho HT, Kende H (1997a) Expansins and internodal growth of deepwater rice. Plant Physiol 113:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Cho HT, Kende H (1997b) Expansins in deepwater rice internodes. Plant Physiol 113:1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Choi D, Lee Y, Cho H-T, Kende H (2003) Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15:1386–1398

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Physiol Plant Mol Biol 50:391–417

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000a) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000b) New genes and new biological roles for expansins. Curr Opin Plant Biol 3:73–78

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ, Li LC, Cho H-T, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    Article  CAS  PubMed  Google Scholar 

  • Durachko DM, Cosgrove DJ (2009) Measuring plant cell wall extension (Creep) induced by acidic pH and by alpha-expansin. J Vis Exp 25. http://www.jove.com/index/details.stp?id=1263

  • Dyrlov Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  CAS  Google Scholar 

  • Edwards MC, Smith GN, Bowling DJF (1988) Guard cells extrude protons prior to stomatal opening—a study using fluorescence microscopy and pH micro-electrodes. J Exp Bot 39:1541–1547

    Article  Google Scholar 

  • Franks PJ, Buckley TN, Shope JC, Mott KA (2001) Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. Plant Physiol 125:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Green PB, Cummins WR (1974) Growth rate and turgor pressure: auxin effect studies with an automated apparatus for single coleoptiles. Plant Physiol 54:863–869

    Article  CAS  PubMed  Google Scholar 

  • Harrison EP, McQueen-Mason SJ, Manning K (2001) Expression of six expansin genes in relation to extension activity in developing strawberry fruit. J Exp Bot 52:1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Jinno N, Kuraishi S (1982) Acid-induced stomatal opening in Commelina communis and Vicia faba. Plant Cell Physiol 23:1169–1174

    CAS  Google Scholar 

  • Jobling SA, Jarman C, Teh M-M, Holmberg N, Blake C, Verhoeyen ME (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotech 21:77–80

    Article  CAS  Google Scholar 

  • Jones L, Milne JL, Ashford D, McQueen-Mason SJ (2003) From the cover: cell wall arabinan is essential for guard cell function. PNAS 100:11783–11788

    Article  CAS  PubMed  Google Scholar 

  • Kalamaki MS, Palys JM, Labavitch JM, Reid DS, Brummell DA (2003a) Simultaneous transgenic suppression of LePG and LeExp1 influences rheological properties of juice and concentrates from a processing tomato variety. J Agric Food Chem 51:7456–7464

    Article  CAS  PubMed  Google Scholar 

  • Kalamaki MS, Powell ALT, Struijs K, Labavitch JM, Reid DS, Bennett AB (2003b) Transgenic overexpression of expansin influences particle size distribution and improves viscosity of tomato juice and paste. J Agric Food Chem 51:7465–7471

    Article  CAS  PubMed  Google Scholar 

  • Koepsell H (1978) Characteristics of antibody inhibition of rat kidney (Na+–K+)-ATPase. J Membr Biol 44:85–102

    Article  CAS  PubMed  Google Scholar 

  • Kyoko H, Jocelyn KCR, Ryohei N, Akitsugu I, Yasutaka K (2003) Differential expression of seven alpha-expansin genes during growth and ripening of pear fruit. Physiol Plant 117:564–572

    Article  Google Scholar 

  • Lee Y, Choi D, Kende H (2001) Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol 4:527–532

    Article  CAS  PubMed  Google Scholar 

  • Lee D-K, Ahn JH, Song S-K, Choi YD, Lee JS (2003) Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol 131:985–997

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128:854–864

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jones L, McQueen-Mason S (2003) Expansins and cell growth. Curr Opin Plant Biol 6:603–610

    Article  CAS  PubMed  Google Scholar 

  • Makari JG (1960) An antibody inhibitor. Nature 185:747–749

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason S, Cosgrove DJ (1994) Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. PNAS 91:6574–6578

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls (analysis of wall hydrolysis, stress relaxation, and binding). Plant Physiol 107:87–100

    CAS  PubMed  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  CAS  PubMed  Google Scholar 

  • Muller B, Bourdais G, Reidy B, Bencivenni C, Massonneau A, Condamine P, Rolland G, Conejero G, Rogowsky P, Tardieu F (2007) Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation. Plant Physiol 143:278–290

    Article  CAS  PubMed  Google Scholar 

  • Park YW, Baba Ki, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Kim T-W, Son S-H, Hwang J-Y, Lee SC, Chang SC, Kim S-H, Kim SW, Kim S-K (2010) Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry 71(4):380–387

    Article  CAS  PubMed  Google Scholar 

  • Philip JR (1958) The osmotic cell, solute diffusibility, and the plant water economy. Plant Physiol 33:264–271

    Article  CAS  PubMed  Google Scholar 

  • Raschke K, Dickerson M (1973) Changes in shape and volume of guard cells during stomatal movement. Plant Res 1972:149–153

    Google Scholar 

  • Rose JKC, Lee HH, Bennett AB (1997) Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA 94:5955–5960

    Article  CAS  PubMed  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6, Article 242

  • Schipper O, Schaefer D, Reski R, Fleming A (2002) Expansins in the bryophyte Physcomitrella patens. Plant Mol Biol 50:789–802

    Article  CAS  PubMed  Google Scholar 

  • Sharpe P, Wu H, Spence R (1987) Stomatal mechanics. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function Stanford. Stanford University Press, CA, USA, pp 91–114

    Google Scholar 

  • Steudle E (1993) Pressure probe techniques: basic principles and application to studies of water and solute relations at the cell, tissue, and organ level. In: Smith JAC, Griffith H (eds) Water deficits: plant responses from cell to community. BIOS Scientific Publishers, Oxford, pp 5–36

  • Steudle E, Zimmermann U, Luttge U (1977) Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol 59:285–289

    Article  CAS  PubMed  Google Scholar 

  • Steudle E, Ferrier J, Dainty J (1982) Measurements of the volumetric and transverse elastic extensibilities of Chara corallina internodes by combining the external force and pressure probe techniques. Can J Bot 60:1503–1511

    Google Scholar 

  • Tyree M, Jarvis P (1982) Water in tissues and cells. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. II. water relations and carbon assimilation. Encyclopedia of plant physiology. Springer, New York, pp 36–77

    Google Scholar 

  • Vinters H, Dainty J, Tyree MT (1977) Cell wall elastic properties of Chara corallina. Can J Bot 55:1933–1939

    Article  Google Scholar 

  • Wang CX, Wang L, Thomas CR (2004) Modelling the mechanical properties of single suspension-cultured tomato cells. Ann Bot 93:443–453

    Article  CAS  PubMed  Google Scholar 

  • Weyers JDB, Travis AJ (1981) Selection and preparation of leaf epidermis for experiments on stomatal physiology. J Exp Bot 32:837–850

    Article  Google Scholar 

  • Wieczorek K, Golecki B, Gerdes L, Heinen P, Szakasits D, Durachko DM, Cosgrove DJ, Kreil DP, Puzio PS, Bohlmann H, Grundler FMW (2006) Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. Plant J 48:98–112

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Chen S, Wang X-C (2007) Arabidopsis expansin AtEXP1 involved in the regulation of stomatal movement. Acta Agron Sin 32:562–567

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (No. 2006CB100100), the National Natural Science Foundation of China (No. 30721062) and the “111 Project” (No. B06003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Chen Wang.

Additional information

Communicated by K. Chong.

X.-Q. Zhang and P.-C. Wei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XQ., Wei, PC., Xiong, YM. et al. Overexpression of the Arabidopsis α-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus. Plant Cell Rep 30, 27–36 (2011). https://doi.org/10.1007/s00299-010-0937-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0937-2

Keywords

Navigation